Four Species with Crop Potential in Saline Environments: The SALAD Project Case Study †
Abstract
:1. Introduction
2. Tomato Crop
2.1. Origin, Distribution, and Botanical Description
2.2. Tomato Response to Salinity
3. Potato Crop
3.1. Origin and Distribution, and Botanical Description
3.2. Potato Response to Salinity
4. Quinoa Crop
4.1. Origin and Distribution, and Botanical Description
4.2. Quinoa Response to Salinity
5. New Zealand Spinach Crop
5.1. Origin and Distribution, and Botanical Description
5.2. New Zealand Spinach Response to Salinity
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Maas, E.V.; Hoffman, G.J. Crop Salt Tolerance–Current Assessment. J. Irrig. Drain. Div. Am. Soc. Civ. Eng. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Atzori, G.; Mancuso, S.; Masi, E. Seawater Potential Use in Soilless Culture: A Review. Sci. Hortic. 2019, 249, 199–207. [Google Scholar] [CrossRef]
- Rush, D.W.; Epstein, E. Genotypic Responses to Salinity. Plant Physiol. 1976, 57, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Cuartero, J.; Fernandez-Munos, R. Tomato and Salinity. Sci. Hortic. 1999, 78, 83–125. [Google Scholar] [CrossRef]
- Sgherri, C.; Kadlecová, Z.; Pardossi, A.; Navari-Izzo, F.; Izzo, R. Irrigation with Diluted Seawater Improves the Nutritional Value of Cherry Tomatoes. J. Agric. Food Chem. 2008, 56, 3391–3397. [Google Scholar] [CrossRef]
- Kawai, Y.; Hiratsuka, S.; Tashiro, T.; Kunoh, H. Effects of Deep-Sea Water Application on Fruit Qualities of Satsuma Mandarin [Citrus Unshiu] and Tomato [Lycopersicon Esculentum]. Hortic. Res. 2002, 1, 179–182. [Google Scholar] [CrossRef]
- Chourasia, K.N.; Lal, M.K.; Tiwari, R.K.; Dev, D.; Kardile, H.B.; Patil, V.U.; Kumar, A.; Vanishree, G.; Kumar, D.; Bhardwaj, V.; et al. Salinity Stress in Potato: Understanding Physiological, Biochemical and Molecular Responses. Life 2021, 11, 545. [Google Scholar] [CrossRef] [PubMed]
- De Vos, A.; Bruning, B.; van Straten, G.; Oosterbaan, R.; Rozema, J.; van Bodegom, P. Crop Salt Tolerance under Controlled Field Conditions in The Netherlands, Based on Trials Conducted at Salt Farm Texel; Salt Farm Texel: Den Hoorn, The Netherlands, 2016. [Google Scholar]
- Levy, D.; Veilleux, R.E. Adaptation of Potato to High Temperatures and Salinity—A Review. Am. J. Potato Res. 2007, 84, 487–506. [Google Scholar] [CrossRef]
- Heuer, B.; Nadler, A. Physiological Response of Potato Plants to Soil Salinity and Water Deficit. Plant Sci. 1998, 137, 43–51. [Google Scholar] [CrossRef]
- Adolf, V.I.; Jacobsen, S.E.; Shabala, S. Salt Tolerance Mechanisms in Quinoa (Chenopodium Quinoa Willd.). Environ. Exp. Bot. 2013, 92, 43–54. [Google Scholar] [CrossRef]
- Hinojosa, L.; Gonzalez, J.A.; Barrios-Masias, F.H.; Fuentes, F.F.; Murphy, K.M. Quinoa Abiotic Stress Responses: A Review. Plants 2018, 7, 106. [Google Scholar] [CrossRef] [PubMed]
- Hariadi, Y.; Marandon, K.; Tian, Y.; Jacobsen, S.E.; Shabala, S. Ionic and Osmotic Relations in Quinoa (Chenopodium Quinoa Willd.) Plants Grown at Various Salinity Levels. J. Exp. Bot. 2011, 62, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.E.; Mujica, A.; Jensen, C.R. The Resistance of Quinoa (Chenopodium Quinoa Willd.) to Adverse Abiotic Factors. Food Rev. Int. 2003, 19, 99–109. [Google Scholar] [CrossRef]
- Neves, M.A.; Miguel, M.G.; Marques, C.; Panagopoulos, T.; Beltrao, J. The Combined Effects of Salts and Calcium on Growth and Mineral Accumulation of Tetragonia tetragonioides—A Salt Removing Species. WSEAS Trans. Environ. Dev. 2008, 4, 1–5. [Google Scholar]
- Wilson, C.; Lesch, S.M.; Grieve, C.M. Growth Stage Modulates Salinity Tolerance of New Zealand Spinach (Tetragonia tetragonioides, Pall.) and Red Orach (Atriplex hortensis L.). Ann. Bot. 2000, 85, 501–509. [Google Scholar] [CrossRef]
- Yousif, B.S.; Liu, L.Y.; Nguyen, N.T.; Masaoka, Y.; Saneoka, H. Comparative Studies in Salinity Tolerance between New Zealand Spinach (Tetragonia tetragonioides) and Chard (Beta Vulgaris) to Salt Stress. Agric. J. 2010, 5, 19–24. [Google Scholar] [CrossRef]
- Atzori, G.; Nissim, W.G.; Macchiavelli, T.; Vita, F.; Azzarello, E.; Pandolfi, C.; Masi, E.; Mancuso, S. Tetragonia tetragonioides (Pallas) Kuntz. as Promising Salt-Tolerant Crop in a Saline Agriculture Context. Agric. Water Manag. 2020, 240, 106261. [Google Scholar] [CrossRef]
- Guidi Nissim, W.; Masi, E.; Pandolfi, C.; Mancuso, S.; Atzori, G. The Response of Halophyte (Tetragonia tetragonioides (Pallas) Kuntz.) and Glycophyte (Lactuca sativa L.) Crops to Diluted Seawater and Nacl Solutions: A Comparison between Two Salinity Stress Types. Appl. Sci. 2021, 11, 6336. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atzori, G. Four Species with Crop Potential in Saline Environments: The SALAD Project Case Study. Environ. Sci. Proc. 2022, 16, 54. https://doi.org/10.3390/environsciproc2022016054
Atzori G. Four Species with Crop Potential in Saline Environments: The SALAD Project Case Study. Environmental Sciences Proceedings. 2022; 16(1):54. https://doi.org/10.3390/environsciproc2022016054
Chicago/Turabian StyleAtzori, Giulia. 2022. "Four Species with Crop Potential in Saline Environments: The SALAD Project Case Study" Environmental Sciences Proceedings 16, no. 1: 54. https://doi.org/10.3390/environsciproc2022016054
APA StyleAtzori, G. (2022). Four Species with Crop Potential in Saline Environments: The SALAD Project Case Study. Environmental Sciences Proceedings, 16(1), 54. https://doi.org/10.3390/environsciproc2022016054