Enhanced Salinity Tolerance of Medicago sativa, Roots AM Colonization and Soil Enzyme Activities by PGPR †
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
3.1. Effet of PGPR on Plant Tolerance and AM Colonization under NaCL Stress
3.2. Effet of PGPR on Soil Enzyme Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ben Chikha, M.; Hessini, K.; Ourteni, R.N.; Ghorbel, A.; Zoghlami, N. Identification of barley landrace genotypes with contrasting salinity tolerance at vegetative growth stage. Plant Biotechnol. 2016, 33, 287–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallam, A.; Alqudah, A.M.; Dawood, M.F.; Baenziger, P.S.; Börner, A. Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. Int. J. Mol. Sci. 2019, 20, 3137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Kulkarni, J.; Jha, B. Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front. Microbiol. 2016, 7, 1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egamberdieva, D.; Wirth, S.; Bellingrath-Kimura, S.D.; Mishra, J.; Arora, N.K. Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Front. Microbiol. 2019, 10, 2791. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, R.; Evelin, H.; Devi, T.S.; Gupta, S. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Front. Plant Sci. 2019, 10, 470. [Google Scholar]
- Krishnamoorthy, R.; Shagol, C.; Kim, K.; Lee, S.; Yoon, S.; Sa, T. Isolation of salt tolerant arbuscular mycorrhizal fungi (AMF) from Saemangeum reclaimed soil and mass production in hairy roots. Kor. S. Fert. Soc. Acad. 2011, 10, 92–93. [Google Scholar]
- Ren, H.; Lv, C.; Fernández-García, V.; Huang, B.; Yao, J.; Ding, W. Biochar and PGPR amendments influence soil enzyme activities and nutrient concentrations in a eucalyptus seedling plantation. Biom. Conv. Bioref. 2019, 11, 1865–1874. [Google Scholar] [CrossRef]
- Pan, J.; Huang, C.; Peng, F.; Zhang, W.; Luo, J.; Ma, S.; Xue, X. Effect of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting bacteria (PGPR) inoculations on ElaeagnusAngustifolia L. in saline soil. Appl. Sci. 2020, 10, 945. [Google Scholar]
- Tirry, N.; Kouchou, A.; Laghmari, G.; Lemjereb, M.; Hnadi, H.; Amrani, K.; Bahafid, W.; El Ghachtouli, N. Improved salinity tolerance of Medicago sativa and soil enzyme activities by PGPR. Biocatal. Agric. Biotechnol. 2021, 31, 101914. [Google Scholar] [CrossRef]
- Moran, R.; Porath, D. Chlorophyll determination in intact tissues using N, N-dimethylformamide. Plant Physiol. 1980, 65, 478–479. [Google Scholar] [CrossRef] [Green Version]
- Bates, L.S.; Waldren, R.P.; Teare, L.D. Determination of proline for water-stress studies. Plant Soil. 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Jana, S.; Choudhuri, M.A. Glycolate metabolism of three submersed aquatic angiosperms: Effect of heavy metals. Aquat. Bot. 1981, 11, 67–77. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 2016, 125, 189–198. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscularmycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158-IN18. [Google Scholar] [CrossRef]
- Trouvelot, A.; Kough, J.L.; Gianinazzi-Pearson, V. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthode d’estimation ayant une signification fonctionnelle. In Proceedings of the 1st European Symposium on Mycorrhizae, Dijon, France, 1–5 July 1985; pp. 217–221. [Google Scholar]
- Dick, R.P.; Breakwell, D.P.; Turco, R.F. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. Methods Assess. Soil Qual. 1997, 49, 247–271. [Google Scholar]
- Sinsabaugh, R.L.; Reynolds, H.; Long, T.M. Rapid assay for amidohydrolase (urease) activity in environmental samples. Soil Biol. Biochem. 2000, 32, 2095–2097. [Google Scholar] [CrossRef]
- Acosta-Martı́nez, V.; Tabatabai, M.A. Inhibition of arylamidase activity in soils by toluene. Soil Biol. Biochem. 2002, 34, 229–237. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Arylsulfatase activity of soils. Soil Sci. Soc. Am. J. 1970, 34, 225–229. [Google Scholar] [CrossRef]
- Gianinazzi, S.; Schüepp, H.; Barea, J.M.; Haselwandter, K. Mycorrhizal Technology in Agriculture: From Genes to Bioproducts; Birkhäuser: Basel, Switzerland, 2012. [Google Scholar]
- Habib, S.H.; Kausar, H.; Saud, H.M. Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. BioMed Res. Int. 2016, 2016, 6284547. [Google Scholar] [CrossRef] [Green Version]
- Sipahutar, M.K.; Piapukiew, J.; Vangnai, A.S. Efficiency of the formulated plant-growth promoting Pseudomonas fluorescens MC46 inoculant on triclocarban treatment in soil and its effect on Vigna radiata growth and soil enzyme activities. J. Hazard. Mat. 2018, 344, 883–892. [Google Scholar] [CrossRef]
- Qin, M.; Zhang, Q.; Pan, J.; Jiang, S.; Liu, Y.; Bahadur, A.; Peng, Z.; Yang, Y.; Feng, H. Effect of arbuscular mycorrhizal fungi on soil enzyme activity is coupled with increased plant biomass. Eur. J. Soil Sci. 2020, 71, 84–92. [Google Scholar] [CrossRef]
Treatment | Plant Growth | Mycorrhizal Colonization | |||
---|---|---|---|---|---|
Shoot Dry Weight (mg) | Root Dry Weight (mg) | F% | M% | A% | |
Control | 17.315 b | 15.11 b | 64.19 b | 21.45 b | 13.76 b |
Consortium | 26.611 a | 18.050 a | 74.55 a | 37.06 a | 21.58 a |
Treatment | Chlorophyll (mg/g) | H2O2 (nmol/g) | MDA (µmol/g) | Proline (µmol/g) |
---|---|---|---|---|
Control | 0.95 b | 695.85 a | 81.16 a | 228.26 a |
Consortium | 1.32 a | 499.60 b | 61.55 b | 109.21 b |
Treatment | Soil Enzyme Activities mU/g Dry Soil | |||
---|---|---|---|---|
GALA | PHOS | SULF | AMID | |
Control | 1.04 b | 15.19 b | 74.92 a | 36.99 b |
Consortium | 1.800 a | 20.33 a | 73.43 a | 47.04 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirry, N.; Ferioun, M.; Kouchou, A.; Laghmari, G.; Bahafid, W.; El Ghachtouli, N. Enhanced Salinity Tolerance of Medicago sativa, Roots AM Colonization and Soil Enzyme Activities by PGPR. Environ. Sci. Proc. 2022, 16, 14. https://doi.org/10.3390/environsciproc2022016014
Tirry N, Ferioun M, Kouchou A, Laghmari G, Bahafid W, El Ghachtouli N. Enhanced Salinity Tolerance of Medicago sativa, Roots AM Colonization and Soil Enzyme Activities by PGPR. Environmental Sciences Proceedings. 2022; 16(1):14. https://doi.org/10.3390/environsciproc2022016014
Chicago/Turabian StyleTirry, Nabil, Mohamed Ferioun, Aziza Kouchou, Ghizlane Laghmari, Wifak Bahafid, and Naïma El Ghachtouli. 2022. "Enhanced Salinity Tolerance of Medicago sativa, Roots AM Colonization and Soil Enzyme Activities by PGPR" Environmental Sciences Proceedings 16, no. 1: 14. https://doi.org/10.3390/environsciproc2022016014
APA StyleTirry, N., Ferioun, M., Kouchou, A., Laghmari, G., Bahafid, W., & El Ghachtouli, N. (2022). Enhanced Salinity Tolerance of Medicago sativa, Roots AM Colonization and Soil Enzyme Activities by PGPR. Environmental Sciences Proceedings, 16(1), 14. https://doi.org/10.3390/environsciproc2022016014