KPI Evaluation Framework and Tools Performance: A Case Study from the inteGRIDy Project †
Abstract
:1. Introduction
2. Data Collection and Evaluation Methodology
2.1. Data Collection
2.2. Evaluation Methodology
3. Case Study
3.1. Pilot Site Description
3.2. Specification of Use Case
4. Results and Analysis
4.1. M7 Energy Storage System Use Case
4.2. Building Optimization Use Case
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavallo, A.J. Energy Storage Technologies for Utility Scale Intermittent Renewable Energy Systems. J. Sol. Energy Eng. 2001, 123, 387–389. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, X.; Wang, Z.; Ruan, J.; Ma, C.; Song, Z.; Dorrell, D.G.; Pecht, M.G. Hybrid electrochemical energy storage systems: An overview for smart grid and electrified vehicle applications. Renew. Sustain. Energy Rev. 2020, 139, 110581. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Goodenough, J.B. Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 2014, 7, 14–18. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. A comprehensive review of thermal energy storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Prasad, J.S.; Muthukumar, P.; Desai, F.; Basu, D.N.; Rahman, M.M. A critical review of high-temperature reversible thermochemical energy storage systems. Appl. Energy 2019, 254, 113733. [Google Scholar] [CrossRef]
- Pullen, K.R. The status and future of flywheel energy storage. Joule 2019, 3, 1394–1399. [Google Scholar] [CrossRef]
- Zeynalian, M.; Hajialirezaei, A.H.; Razmi, A.R.; Torabi, M. Carbon dioxide capture from compressed air energy storage system. Appl. Therm. Eng. 2020, 178, 115593. [Google Scholar] [CrossRef]
- Beshr, E.H.; Abdelghany, H.; Eteiba, M. Novel optimization technique of isolated microgrid with hydrogen energy storage. PLoS ONE 2018, 13, e0193224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Chen, M.; Ma, Z.; He, G.; Dai, W.; Liu, D.; Zhang, C.; Zhong, H. Modelling integrated power and transportation sectors decarbonization with hydrogen energy storage. IEEE Trans. Ind. Appl. 2021. [Google Scholar] [CrossRef]
- Chua, K.J.; Chou, S.K.; Yang, W.M. Advances in heat pump systems: A review. Appl. Energy 2010, 87, 3611–3624. [Google Scholar] [CrossRef]
- Arteconi, A.; Hewitt, N.J.; Polonara, F. Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems. Appl. Therm. Eng. 2013, 51, 155–165. [Google Scholar] [CrossRef]
- Renaldi, R.; Kiprakis, A.; Friedrich, D. An optimisation framework for thermal energy storage integration in a residential heat pump heating system. Appl. Energy 2017, 186, 520–529. [Google Scholar] [CrossRef] [Green Version]
- Albadi, M.H.; El-Saadany, E.F. Demand Response in Electricity Markets: An Overview. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; pp. 1–5. [Google Scholar] [CrossRef]
- Cretu, M.; Ceclan, A.; Czumbil, L.; Şteţ, D.; Bârgăuan, B.; Micu, D.D. Key Performance Indicators (KPIs) for the Evaluation of the Demand Response in the Technical University of Cluj-Napoca Buildings. In Proceedings of the 2019 8th International Conference on Modern Power Systems (MPS), Cluj, Romania, 21–23 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Baltputnis, K.; Zane, B.; Sauats, A. Analysis of the potential benefits from participation in Explicit and Implicit Demand Response. In Proceedings of the 2019 54th IEEE Internation Universities Power Engineering Conference, Bucharest, Romania, 3–6 September 2019. [Google Scholar]
- Qdr, Q. Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them; U.S. Department Energy: Washington, DC, USA, 2006. [Google Scholar]
- Goldman, C. Coordination of Energy Efficiency and Demand Response; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2010. [Google Scholar]
KPI | Unit | Baseline | Smart |
---|---|---|---|
Retail Cost of Energy | GBP | 1443.69 | 468.04 |
Average Cost of Energy Consumption | GBP/kWh | 3.97 | 1.29 |
KPI | Baseline | 10% Increase | 10% Decrease |
---|---|---|---|
Retail Cost of Energy | 17,681 | 17,728 | 17,606 |
Average Cost of Energy Consumption | 1360 | 1364 | 1354 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogwumike, C.; Dawood, H.; Ahmed, T.; Gudlaugsson, B.; Dawood, N. KPI Evaluation Framework and Tools Performance: A Case Study from the inteGRIDy Project. Environ. Sci. Proc. 2021, 11, 23. https://doi.org/10.3390/environsciproc2021011023
Ogwumike C, Dawood H, Ahmed T, Gudlaugsson B, Dawood N. KPI Evaluation Framework and Tools Performance: A Case Study from the inteGRIDy Project. Environmental Sciences Proceedings. 2021; 11(1):23. https://doi.org/10.3390/environsciproc2021011023
Chicago/Turabian StyleOgwumike, Chris, Huda Dawood, Tariq Ahmed, Bjarnhedinn Gudlaugsson, and Nashwan Dawood. 2021. "KPI Evaluation Framework and Tools Performance: A Case Study from the inteGRIDy Project" Environmental Sciences Proceedings 11, no. 1: 23. https://doi.org/10.3390/environsciproc2021011023
APA StyleOgwumike, C., Dawood, H., Ahmed, T., Gudlaugsson, B., & Dawood, N. (2021). KPI Evaluation Framework and Tools Performance: A Case Study from the inteGRIDy Project. Environmental Sciences Proceedings, 11(1), 23. https://doi.org/10.3390/environsciproc2021011023