Optimization of Technologies for Implementing Smart Metering in Residential Electricity Supplies in Peru
Abstract
:1. Introduction
1.1. Research Contributions
- The development of a novel model to evaluate the optimal implementation of SM systems (SMSs) in Peru’s electrical distribution systems.
- The consideration of technological, geographical, consumption, and regulatory factors, identifying the most appropriate technologies and evaluating their impacts on a particular ES.
- A valuable tool for EDEs, regulatory and normative institutions, and the academic community enables the following:
- ○
- Informed decision-making by evaluating the technical and economic feasibility of different SMS implementation options.
- ○
- Optimized resources by identifying the optimal parameters for a massive deployment of SM.
- ○
- Improved energy efficiency by quantifying the potential benefits in terms of reducing technical losses, operating costs, and response times following interruptions.
- ○
- Contribution to the national energy policy by supporting the transition toward a more efficient and sustainable energy matrix.
1.2. Justification of the Methodology
2. Materials and Methods
- The determination of communication technologies, architectures applicable to an SMI, and the characteristics of the ES.
- The determination of the relevant costs and benefits.
- The formulation of the model based on the design of metrics for each of the communication architectures and the calculation of economic indicators (NPV, IRR, and BCR).
- The optimization of variables (costs and benefits) for a viable SMI deployment (NPV ≥ 0; IRR ≥ 12%; BCR > 1).
- The simulation of the variables (costs and benefits) for a deployment of the SMI with BCR = 1.
- Simulation for the integration of cost variables (technical losses) for a viable SMI deployment.
- The analysis and discussion of the results for the indicators that reflect the viability of the SMI’s deployment.
2.1. Characteristics of Communication Technologies
2.2. Characteristics of ESs
- Number of single-phase and three-phase users;
- Number of distribution substations;
- Degree of interference;
- Width and length of the area (geography);
- Average LV (low voltage) circuit length;
- Degree of longitudinal uniformity.
2.3. Benefit–Cost Ratio Analysis
2.3.1. Benefit
- Savings from reduced meter reading costs
- 2.
- Savings from reduced disconnection and reconnection costs
- 3.
- Savings from reduced NTLs
- 4.
- Savings from reduced unsupplied energy
- 5.
- Savings from reduced outage compensation (Equations (8) and (9)) are as follows:
2.3.2. Costs
- Initial investment costs (CAPEX). The most substantial investment cost is for the measuring instruments (MIs), followed by the data concentrators, whose costs vary based on technology. Labor costs finalize the initial capital expenditure.
- O&M costs (OPEX). Ongoing operational expenses encompass replacements for aging MIs and concentrators. However, higher costs typically involve software licenses for metering devices, software maintenance and updates, and communication charges, which depend on the chosen communication technology and are often billed by public utility telecommunication providers.
2.4. SMI Modeling
2.4.1. Research Metamodel
2.4.2. Mathematical Model
- Indices and sets
- Parameters
- Decision variables
- Objective function
- Constraints
2.4.3. Simulation Platforms
3. Results
3.1. ES Characteristics
3.2. Simulation Results
3.2.1. LDS
3.2.2. ADINELSA
3.2.3. SEAL
3.2.4. ELSE
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdulrasheed, M.A.; Ahmed, M.S.; Abdullateef, A.A.; Oguntowo, B.I.; Aliyu, Y. Integrating IoT Systems for Real-Time Energy Monitoring and Efficiency in Smart Buildings. J. Mater. Environ. Sci. 2025, 16, 25–35. [Google Scholar]
- Solis, R.; Gómez, G.A.; Saénz, K.J.; Ellis, A.J.; Navarro, W.J. Evaluación del comportamiento de la demanda en el modelado de las redes de distribución. Tecnol. Marcha 2025, 38, 115–127. [Google Scholar]
- Nutakki, M.; Mandava, S. Review on optimization techniques and role of Artificial Intelligence in home energy management systems. Eng. Appl. Artif. Intell. 2023, 119, 105721. [Google Scholar] [CrossRef]
- Michael, T.; Chukwudi, A.; Oluwajuwonlo, D.; Queen, Z. The impact of smart grid on energy efficiency: A comprehensive review. Eng. Sci. Technol. J. 2024, 5, 1257–1269. [Google Scholar] [CrossRef]
- EC. Benchmarking Smart Metering Deployment in the EU-28: Final Report; European Commission: Brussels, Belgium, 2019; Available online: https://op.europa.eu/en/publication-detail/-/publication/b397ef73-698f-11ea-b735-01aa75ed71a1/language-en (accessed on 7 February 2025).
- OSINERGMIN. Fijación del VAD 2022–2026 y 2023–2027. 2022. Available online: https://www.osinergmin.gob.pe/seccion/institucional/regulacion-tarifaria/procesos-regulatorios/electricidad/vad/fijacion-vad-2022-2026-y-2023-2027 (accessed on 7 February 2025).
- Rajaguru, S.; Johansson, B.; Granath, M. Exploring Smart Meters: What We Know and What We Need to Know. In Perspectives in Business Informatics Research; Springer: Cham, Switzerland, 2023; Available online: https://link.springer.com/chapter/10.1007/978-3-031-43126-5_8 (accessed on 7 February 2025). [CrossRef]
- World Bank Group. Survey of International Experience in Advanced Metering Infrastructure and Its Implementation; WBG: Washington, DC, USA, 2018; Available online: https://documentos.bancomundial.org/es/publication/documents-reports/documentdetail/957331569246407856/survey-of-international-experience-in-advanced-metering-infrastructure-and-its-implementation (accessed on 10 March 2025).
- Stagnaro, C. Second-Generation Smart Meter Roll-Out in Italy: A Cost-Benefit Analysis. J. Ind. Bus. Econ. 2025, 52, 201–220. [Google Scholar] [CrossRef]
- EC. Cost-Benefit Analyses & State of Play of Smart Metering Deployment in the EU-27; EC: Bruselas, Belgium, 2014; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52014SC0189 (accessed on 7 February 2025).
- IEA-ISGAN. Annual Report 2018. Available online: https://www.iea-isgan.org/wp-content/uploads/2019/07/ISGAN-Annual-Report_2018_Web.pdf (accessed on 7 February 2025).
- GTD. Estudio de Medidores Inteligentes y su Impacto en Tarifas; Comisión Nacional de Energía—CNE: Santiago de Chile, Chile, 2016; Available online: https://www.cne.cl/wp-content/uploads/2019/02/Informe-GTD-Medidores-Inteligentes-SMMC.pdf (accessed on 7 February 2025).
- Quishpe, S.; Padilla, M.; Ruiz, M. Optimal Deployment of Wireless Networks for Smart Metering. Rev. Técnica Energía 2019, 16, 106–113. [Google Scholar]
- Kochanski, M.; Korczak, K.; Skoczkowski, T. Technology Innovation System Analysis of Electricity Smart Metering in the European Union. Energies 2020, 13, 916. [Google Scholar] [CrossRef]
- LoRaWan. A Technical Overview of LoRa® and LoRaWAN; LoRa Alliance: San Ramon, CA, USA, 2015; Available online: https://www.academia.edu/31617677/A_technical_overview_of_LoRa_and_LoRaWAN_What_is_it (accessed on 8 February 2025).
- Abdul, D.; Wengi, J. Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology. Sci. Direct 2022, 184, 1018–1032. [Google Scholar] [CrossRef]
- Tangsunantham, N.; Chaiyod, P. Experimental Performance Analysis of Wi-SUN Channel Modelling Applied to Smart Grid Applications. Energies 2022, 15, 2417. [Google Scholar] [CrossRef]
- Battista, G.; Marchesse, M.; Moheddine, A.; Patrone, F. A Possible Smart Metering System Evolution for Rural and Remote Areas Employing Unmanned Aerial Vehicles and Internet of Things in Smart Grids. Sensors 2021, 21, 1627. [Google Scholar] [CrossRef] [PubMed]
- El Sayed, W. Electromagnetic Interference of Spread-Spectrum Modulated Power Converters in G3-PLC Power Line Communication Systems. IEEE Lett. EMC Pract. Appl. 2020, 3, 118–122. [Google Scholar] [CrossRef]
- Llano, A.; Angulo, I.; Vega, D.; Marron, L. Virtual PLC Lab Enabled Physical Layer Improvement Proposals for PRIME and G3-PLC Standards. Appl. Sci. 2020, 10, 1777. [Google Scholar] [CrossRef]
- ISGAN. Benefit & Cost Analyses and Toolkits. ISGAN Project. Annex 3; Ajou University: Suwon, Republic of Korea, 2015; Available online: https://www.iea-isgan.org/benefit-cost-analyses-and-toolkits/ (accessed on 7 February 2025).
- Puma, D.W.; Molina, Y.P.; Atoccsa, B.A.; Luyo, J.E.; Naupari, Z. Distribution Network Reconfiguration Optimization Using a New Algorithm Hyperbolic Tangent Particle Swarm Optimization (HT-PSO). Energies 2024, 17, 3798. [Google Scholar] [CrossRef]
- Badr, M.M.; Ibrahem, M.I.; Kholidy, H.A.; Fouda, M.M.; Ismail, M. Review of the Data-Driven Methods for Electricity Fraud Detection in Smart Metering Systems. Energies 2023, 16, 2852. [Google Scholar] [CrossRef]
- DOE. Advanced Metering Infrastructure and Customer Systems. Results from the Smart Grid Investment Grant Program; US Department of Energy: Washington, DC, USA, 2016. Available online: https://www.energy.gov/sites/prod/files/2016/12/f34/AMI%20Summary%20Report_09-26-16.pdf (accessed on 7 February 2025).
- European Commission. A Joint Contribution of DG ENER and DG INFSO Towards the Digital Agenda, Action 73: Set of Common Functional Requirements of the SMART METER; European Commission: Brussels, Belgium, 2011; Available online: https://energy.ec.europa.eu/system/files/2014-11/2011_10_smart_meter_funtionalities_report_0.pdf (accessed on 7 February 2025).
- NTCSE; MINEM. Decreto Supremo Nº 020-97-EM. Norma Técnica de Calidad de los Servicios Eléctricos; MINEM: Lima, Peru, 1997; Available online: https://www.gob.pe/institucion/osinergmin/normas-legales/738550-020-97-em (accessed on 7 February 2025).
- SISCOM. Commercial Information; OSINERGMIN: Lima, Peru, 2024; Available online: https://www.osinergmin.gob.pe/seccion/institucional/regulacion-tarifaria/publicaciones/regulacion-tarifaria (accessed on 7 February 2025).
- Electricity Tariff Schedules; Luz Del Sur: Lima, Peru, 2024; Available online: https://www.luzdelsur.com.pe/uploads/shares/PDF/Tarifas/2024/Mayo/Rates_LDS_May2024.pdf (accessed on 7 February 2025).
- Electricity Tariff Schedules; SEAL: Arequipa, Peru, 2024; Available online: https://consulta.seal.com.pe/clientes/TarifasSeal/Publicaci%C3%B3n%20Pliego%20Tarifario%20005-2024%20vig%2004-05-2024%20SEAL.PDF (accessed on 7 February 2025).
- Electricity Tariff Schedules; ADINELSA: San Juan de Miraflores, Peru, 2024; Available online: https://www.adinelsa.com.pe/adinelsaweb/index.php/atencion-al-cliente/tarifas (accessed on 7 February 2025).
- Electricity Tariff Schedules; Electro Sur Este S.A.A.: Cusco, Peru, 2024; Available online: https://www.gob.pe/institucion/electrosureste/informes-publicaciones/5889047-pliego-tarifario-01-de-mayo-2024 (accessed on 19 January 2025).
- Perić, K.; Šimić, Z.; Jurić, Ž. Characterization of Uncertainties in Smart City Planning: A Case Study of the Smart Metering Deployment. Energies 2022, 15, 2040. [Google Scholar] [CrossRef]
- Rind, Y.M.; Raza, M.H.; Zubair, M.; Mehmood, M.Q.; Massoud, Y. Smart Energy Meters for Smart Grids, an Internet of Things Perspective. Energies 2023, 16, 1974. [Google Scholar] [CrossRef]
Technology/Source | [8] | [12] | [13] | [14] | Communication Type |
---|---|---|---|---|---|
Cellular (3G/4G/LTE) | √ | Wireless | |||
RF mesh | √ | Wireless | |||
PLC | √ | Wired | |||
PLC LF | √ | Wired | |||
PLC HF | √ | Wired | |||
RF LA | √ | Wireless | |||
RF mesh | √ | Wireless | |||
ZigBee | √ | Wireless | |||
GSM | √ | Wireless | |||
GPRS | √ | Wireless | |||
3G | √ | Wireless | |||
WiMAX | √ | Wireless | |||
Wi-Fi | √ | Wireless | |||
RF mesh | √ | Wireless | |||
Cellular (3G-4G) | √ | Wireless | |||
Cellular (GSM) | √ | Wireless | |||
Cellular (GPRS) | √ | Wireless | |||
ZigBee | √ | Wireless | |||
6LoWPAN | √ | Wireless | |||
Bluetooth | √ | Wireless | |||
Wi-Fi | √ | Wireless | |||
Enhanced Wi-Fi | √ | Wireless | |||
IEEE 802.11n | √ | Wireless | |||
WiMAX | √ | Wireless | |||
NB-PLC | √ | Wired | |||
BB-PLC | √ | Wired | |||
xDSL ADSL | √ | Wired | |||
xDSL HDSL | √ | Wired | |||
xDSL VHDSL | √ | Wired | |||
Euridis IEC 62056-31 | √ | Wired | |||
PON | √ | Wired |
Distribution Company | Country/Region | Communication Technology (Meters to Concentrator) | Communication (Concentrator to Control Center) | Communication Type |
---|---|---|---|---|
ONCOR | US/Texas | RF mesh and cellular | Cellular | Wireless |
Commonwealth Edison | US/Illinois | RF mesh and cellular | Cellular | Wireless |
Southern California Edison | US/California | RF mesh and cellular | Cellular | Wireless |
Baltimore Gas & Electric | US/Maryland | RF mesh and cellular | Cellular and fiber optic | Hybrid |
Electrobras Amazonas Energía | Brazil | RF mesh and cellular | Cellular | Wireless |
ENEL | Italy | RF mesh, BPL, and cellular | PLC | Hybrid |
PECO | US/Pennsylvania | Punto a punto via modem | Fiber optic | Hybrid |
AusNet Service Company | Australia/Victoria | WiMax point to point | Fiber optic and cellular | Hybrid |
CMS Energy | US/Michigan | Cellular | Cellular | Wireless |
PEPCO | US/Washington DC | RF mesh | Cellular | Wireless |
CESC Ltd. | India/Kolkata | RF mesh | Cellular and fiber optic | Hybrid |
Tata Delhi Distribution Limited | India/Delhi | RF mesh and cellular | Fiber optic | Hybrid |
Segmented | Architectures | |
---|---|---|
Segment 1 | Segment 2 | Segment 1 + Segment 2 |
PLC | GPRS | PLC + GPRS |
RF mesh | GPRS | RF mesh + GPRS |
RF_LA | GPRS | RF_LA + GPRS |
PLC | Fiber | PLC + fiber |
RF mesh | Fiber | RF mesh + fiber |
RF_LA | Fiber | RF_LA + fiber |
RF_LA | RF LA | RF_LA + RF_LA |
Benefit | [5] | [24] | [12] | Scoring |
---|---|---|---|---|
Reduction in billing due to energy efficiency | √ | √ | 2 | |
Meter reading and operational savings | √ | √ | √ | 3 |
Asset operation and maintenance | √ | 1 | ||
Deferral of distribution capacity | √ | 1 | ||
Reduction in technical losses | √ | 1 | ||
NTLs (administrative and fraud) | √ | √ | √ | 3 |
Outage management based on the societal value of lost load | √ | √ | 2 | |
Outage management based on reducing compensation | √ | 1 | ||
CO2 emissions reduction | √ | 1 | ||
Voltage monitoring | √ | √ | 2 |
Costs | Equipment | ES |
---|---|---|
CAPEX | Capital Cost (Investment) | |
Number of meters | Number of customers | |
Number of concentrators | Number of SEDs | |
Number of filters | Degree of interference | |
Number of amplifiers | Network length | |
Workforce | Number of customers/number of SEDs | |
OPEX | O&M costs | |
Cellular communication costs | Number of SEDs | |
Software licenses | Number of customers/SEDs/control center | |
Software maintenance (update) | Number of customer/SEDs/control center |
Concept | Unit | LDS | SEAL | ADINELSA | ELSE |
---|---|---|---|---|---|
Supply | |||||
Single-phase supplies (Nm1) | Number | 3152 | 7050 | 588 | 1662 |
Three-phase supplies (Nm3) | Number | 163 | 485 | 6 | 678 |
Number of distribution substations (Nsed) | SED | 22 | 54 | 3 | 9 |
Operational parameters | |||||
Service disconnection cost (Ccs) | PEN/month | 7.22 | 6.45 | 12.08 | 7.29 |
Service reconnection cost (Crs) | PEN/month | 10.03 | 8.68 | 15.26 | 9.7 |
Percent of service disconnections in year (% Cs) | % | 10.00 | 10 | 10.00 | 10 |
Percent of reading participation fixed charge (% CFl) | % | 19 | 18.17 | 18.17 | 18.17 |
Average energy purchase cost (Cmc) | PEN/kWh | 0.32 | 0.38 | 0.36 | 0.37 |
Penalty for non-supplied energy (Cens) | USD/kWh | 0.05 | 0.05 | 0.05 | 0.05 |
% reduction in NTLs on meter (%PNTm) | % | 20 | 20 | 20 | 20 |
% technical losses on LV network (%PT) | % | 2.5 | 4.5 | 3.16 | 4.56 |
Percent total losses on LV network (%Pe) | % | 6.5 | 6.7 | 5.4 | 5.44 |
D (SAIDI base or actual) | Duration (hour) | 9.73 | 21.74 | 7.89 | 8.22 |
D’ (SAIDI tolerance) | Duration | 20 | 20 | 20 | 20 |
N (SAIFI base or actual) | Frequency (number of times) | 2.67 | 5.95 | 1.50 | 3.81 |
N’ (SAIFI tolerance) | Frequency | 12 | 12 | 12 | 12 |
Unit compensation e | USD/kWh | 0.35 | 0.35 | 0.35 | 0.35 |
Percent decrease in SAIDI (%dS) | % | 20 | 20 | 20 | 20 |
Load factor (Fc) | 0.64 | 0.62 | 0.45 | 0.59 | |
Losses factor (Fp) | 0.47 | 0.46 | 0.28 | 0.42 | |
Distribution substation | |||||
Physical interference (Nif) | Degrees | 3 | 3 | 3 | 3 |
Geographic environment | |||||
Geographic uniformity (Nug) | Degrees | 4 | 3 | 2 | 3 |
Average length of LV circuit per distribution substation (Lm) | m | 150 | 150 | 150 | 150 |
Reach antenna + GPRS, RF LA (La) | km | 3 | 3 | 3 | 3 |
Number of customers per antenna RF LA (Nua) | Unit | 10,000 | 10,000 | 10,000 | 10,000 |
Percent meter box replacement (%rc) | % | 10 | 10 | 10 | 10 |
Criteria | LDS | SEAL | ADI | ELSE |
---|---|---|---|---|
Total number of enterprise customers | 1,302,284 | 496,844 | 79,246 | 655,338 |
Service area | Lima south | Arequipa | Zona rural | Cusco |
Annual sales volume GWh/año | 8475 | 892 | 36 | 696 |
er capita consumption (kWh/month) | 213.81 | 111.14 | 13.01 | 82.27 |
Type of management | Private | Public | Public | Public |
Country/city | Perú | Perú | Perú | Perú |
Supplies | Base Price (USD) | |
---|---|---|
Meter | ||
PLC | ||
Single-phase meter (Cpm1) | Unit | 67.69 |
Three-phase meter (Cpm3) | Unit | 188.89 |
RF mesh | ||
Single-phase meter (Cmm1) | Unit | 88.88 |
Three-phase meter (Cmm3) | Unit | 188.89 |
RF LA | ||
Single-phase meter (Clm1) | Unit | 164.97 |
Three-phase meter (Clm3) | Unit | 538.49 |
Concentrator | ||
PLC | ||
Data collector (Ccd) | Unit | 1817.59 |
Booster PLC (Crp) | Unit | 1300.00 |
Filters (Cfp) | Unit | 650.00 |
RF mesh | ||
Data colector (Crm) | Unit | 5836.07 |
RF Long Range | ||
Collecting antenna (First and second section) (Cacl) | Unit | 88,261.70 |
Collecting antenna + GPRS (Cacg) | Unit | 88,261.70 |
Booster RF (Crr) | Unit | 1300.00 |
Information Management Systems | ||
Hardware | ||
Servers | Unit | |
Software | ||
Software of meter communication HES (head end system) (Csw) | Unit | 13.16 |
Commercial application development (Cda) | Global | |
Custom application development (Cdc) | Global | |
Workforce | ||
Initial investments | ||
Customer communication (Cdif) | Unit | |
Network assessment situation (Cdig) | Global | |
Engineering and design (Cid) | Unit | 11.39 |
Customer notification (Cnc) | Unit | |
Customer enabling (Chs) | Unit | |
Functional tests (Cps) | Unit | |
Training and development (Cec) | Global | 2.89 |
Equipment installation | ||
PLC | ||
Single-phase meter installation (Cmp1) | Unit | 15.83 |
Three-phase meter installation (Cmp3) | Unit | 36.45 |
Data collector installation (Cmpc) | Unit | 158.36 |
Booster installation PLC (Cmpr) | Unit | 158.36 |
Filter installation (Cmf) | Unit | 158.36 |
RF mesh | ||
Single-phase meter installation (Cmm1) | Unit | 16.00 |
Three-phase meter installation (Cmm3) | Unit | 36.45 |
Data collector installation (Cmmc) | Unit | 158.36 |
RF Largo Alcance | ||
Single-phase meter installation (Cml1) | Unit | 15.54 |
Three-phase meter installation (Cml3) | Unit | 36.45 |
Change from metal junction box to polycarbonate (Clcc) | Unit | 9.21 |
Installation of the data collection antenna (Cla) | Unit | 316.71 |
Booster installation RF (Clr) | Unit | 158.36 |
Second section implementation | ||
Implementation of the MI control center GPRS (Cccg) | Global | 10,000.00 |
Implementation of the MI control center RF LA (Cccl) | Global | 88,261.70 |
Supply and installation of fiber optics (Cfo) | km | 3500.00 |
O&M Costs | ||
PLC | ||
Service GPRS (annual) (Cpmg) | Unit | 4.80 |
Software maintenance and updates HES (annual) (Cpms) | Unit | 3.47 |
RF mesh | ||
Service GPRS (annual) (Cmmg) | Unit | 4.80 |
Software maintenance and updates HES (annual) (Cmms) | Unit | 3.47 |
RF Largo Alcance | ||
Service GPRS (annual) (Clms) | Unit | 4.80 |
Software maintenance and updates HES (annual) (Clms) | Unit | 3.47 |
Concept | Unit | LDS | SEAL | ADINELSA | ELSE |
---|---|---|---|---|---|
Cp (per capita consumption) | kWh/month | 213.81 | 111.14 | 13.01 | 82.27 |
%PNT | % | 1.38 | 2.26 | 2.23 | 2.73 |
Concept | Unit | LDS | SEAL | ADINELSA | ELSE |
---|---|---|---|---|---|
BT5B residential energy cost (Ce) | cent USD/kWh/month | 14.92 | 13.65 | 24.33 | 14.66 |
0–30 kWh | cent USD/kWh/month | 14.92 | 13.65 | 24.33 | 14.66 |
31–140 kWh | cent USD/kWh/month | 21.32 | 19.50 | 60.83 | 20.94 |
>140 kWh | cent USD/kWh/month | 22.06 | 20.01 | 62.77 | 21.61 |
Monthly fixed charge (CF) | USD/kWh/month | 0.84 | 1.01 | 1.89 | 1.03 |
Variable | Current ES Value (kWh/Month) | Constraint (kWh/Month) | Value for Max BCR (Ratio) | Value for BCR = 1 |
---|---|---|---|---|
Cpi | 213.81 | 900.0 | 900.0 | 610.1 |
Cpf | 213.81 | 900.0 | 900.0 | 610.1 |
Cmi_plc1 | 67.69 | 34.0 | 34.0 | 37.5 |
Cmi_plc3 | 188.89 | 94.0 | 94.0 | 95.4 |
Cmi_mesh1 | 88.88 | 44.0 | 88.9 | 88.9 |
Cmi_mesh3 | 188.89 | 94.0 | 188.9 | 188.9 |
Cmi_rf1 | 164.97 | 82.0 | 165.0 | 165.0 |
Cmi_rf3 | 538.49 | 269.0 | 538.5 | 538.5 |
%PNT | 1.38 | 5.0 | 5.0 | 3.4 |
Item | Architecture | Cost (USD) | NPV M (USD) | IRR | BCR |
---|---|---|---|---|---|
1 | PLC + GPRS | 471 M | −S/341 | −5.7% | 0.38 |
2 | RF mesh + GPRS | 604 M | −S/474 | −8.2% | 0.31 |
3 | RF_LA + GPRS | 865 M | −S/734 | −11.4% | 0.22 |
4 | PLC + Fiber | 482 M | −S/352 | −5.9% | 0.37 |
5 | RF mesh + Fiber | 616 M | −S/485 | −8.3% | 0.30 |
6 | RF_LA + Fiber | 876 M | −S/745 | −11.5% | 0.22 |
7 | RF_LA + RF_LA | 943 M | −S/813 | −12.2% | 0.20 |
OF: | 0.38 |
Item | Architecture | Cost (USD) | NPV (USD) | IRR | BCR |
---|---|---|---|---|---|
1 | PLC + GPRS | 360 M | −S/0 | 12.0% | 1.00 |
2 | RF mesh + GPRS | 604 M | −S/244 | 3.6% | 0.64 |
3 | RF_LA + GPRS | 865 M | −S/504 | −1.0% | 0.47 |
4 | PLC + Fiber | 372 M | −S/11 | 11.5% | 0.98 |
5 | RF mesh+ Fiber | 616 M | −S/255 | 3.4% | 0.63 |
6 | RF_LA+ Fiber | 876 M | −S/515 | −1.2% | 0.46 |
7 | RF_LA + RF_LA | 943 M | −S/582 | −2.1% | 0.43 |
OF: | 1.00 |
Item | Architecture | Cost (USD) | NPV M (USD) | IRR | BCR |
---|---|---|---|---|---|
1 | PLC + GPRS | 349 M | S/322 | 27.5% | 1.75 |
2 | RF mesh + GPRS | 604 M | S/67 | 14.0% | 1.10 |
3 | RF_LA + GPRS | 865 M | −S/193 | 7.6% | 0.79 |
4 | PLC + Fiber | 360 M | S/311 | 26.6% | 1.71 |
5 | RF mesh + Fiber | 616 M | S/56 | 13.7% | 1.08 |
6 | RF_LA + Fiber | 876 M | −S/204 | 7.4% | 0.79 |
7 | RF_LA + RF_LA | 943 M | −S/272 | 6.2% | 0.73 |
OF: | 1.75 |
Variable | Current ES Values (kWh/Month) | Constraint (kWh/Month) | Value for Max BCR (Ratio) | Value for BCR = 1 |
---|---|---|---|---|
Cpi | 13.01 | 900.0 | 900.0 | 85.5 |
Cpf | 13.01 | 900.0 | 900.0 | 85.5 |
Cmi_plc1 | 67.69 | 34.0 | 34.0 | 34.0 |
Cmi_plc3 | 188.89 | 94.0 | 94.0 | 94.0 |
Cmi_mesh1 | 88.88 | 44.0 | 88.9 | 88.9 |
Cmi_mesh3 | 188.89 | 94.0 | 188.9 | 188.9 |
Cmi_rf1 | 164.97 | 82.0 | 165.0 | 165.0 |
Cmi_rf3 | 538.49 | 269.0 | 538.5 | 538.5 |
%PNT | 2.23 | 5.0 | 5.0 | 5.0 |
Item | Architecture | Costs (USD) | NPV M (USD) | IRR | BCR |
---|---|---|---|---|---|
1 | PLC + GPRS | 86 M | −S/47 | 0.1% | 0.53 |
2 | RF mesh + GPRS | 106 M | −S/66 | −2.4% | 0.45 |
3 | RF_LA + GPRS | 229 M | −S/190 | −10.3% | 0.22 |
4 | PLC + fiber | 87 M | −S/48 | −0.1% | 0.53 |
5 | RF mesh + fiber | 107 M | −S/68 | −2.6% | 0.44 |
6 | RF_LA + fiber | 240 M | −S/201 | −10.7% | 0.21 |
7 | RF_LA + RF_LA | 307 M | −S/268 | −12.8% | 0.17 |
OF: | 0.53 |
Item | Architecture | Cost (USD) | NPV M (USD) | IRR | BCR |
---|---|---|---|---|---|
1 | PLC + GPRS | 65 M | S/0 | 12.0% | 1.00 |
2 | RF mesh + GPRS | 106 M | −S/40 | 4.2% | 0.66 |
3 | RF_LA + GPRS | 229 M | −S/164 | −5.3% | 0.33 |
4 | PLC+ Fiber | 67 M | −S/1 | 11.6% | 0.98 |
5 | RF mesh + fiber | 107 M | −S/42 | 4.0% | 0.66 |
6 | RF_LA+ fiber | 240 M | −S/175 | −5.8% | 0.31 |
7 | RF_LA + RF_LA | 307 M | −S/242 | −8.2% | 0.25 |
OF: | 1.00 |
Item | Architecture | Cost (USD) | NPV M (USD) | IRR | BCR |
---|---|---|---|---|---|
1 | PLC + GPRS | 65 M | S/266 | 74.4% | 4.35 |
2 | RF mesh + GPRS | 106 M | S/226 | 46.0% | 2.89 |
3 | RF_LA + GPRS | 229 M | S/103 | 19.9% | 1.42 |
4 | PLC+ Fiber | 67 M | S/265 | 72.7% | 4.27 |
5 | RF mesh+ Fiber | 107 M | S/225 | 45.3% | 2.85 |
6 | RF_LA+ Fiber | 240 M | S/92 | 18.7% | 1.36 |
7 | RF_LA + RF_LA | 307 M | S/24 | 13.5% | 1.08 |
OF: | 4.35 |
Variable | Current ES Value (kWh/Month) | Constraint (kWh/Month) | Value for Max BCR (Ratio) | Value for BCR = 1 |
---|---|---|---|---|
Cpi | 111.14 | 900.0 | 900.0 | 460.0 |
Cpf | 111.14 | 900.0 | 900.0 | 460.0 |
Cmi_plc1 | 67.69 | 34.0 | 34.0 | 34.0 |
Cmi_plc3 | 188.89 | 94.0 | 94.0 | 94.0 |
Cmi_mesh1 | 88.88 | 44.0 | 88.9 | 88.9 |
Cmi_mesh3 | 188.89 | 94.0 | 188.9 | 188.9 |
Cmi_rf1 | 164.97 | 82.0 | 165.0 | 165.0 |
Cmi_rf3 | 538.49 | 269.0 | 538.5 | 538.5 |
%PNT | 2.26 | 5.0 | 5.0 | 5.0 |
Item | Architecture | Costs (USD) | NPV M (USD) | IRR | BCR |
---|---|---|---|---|---|
1 | PLC + GPRS | 1087 M | −S/835 | −7.4% | 0.34 |
2 | RF mesh + GPRS | 1367 M | −S/1115 | −9.6% | 0.28 |
3 | RF_LA + GPRS | 1847 M | −S/1593 | −12.2% | 0.21 |
4 | PLC + fiber | 1115 M | −S/861 | −7.6% | 0.33 |
5 | RF mesh + fiber | 1396 M | −S/1141 | −9.7% | 0.27 |
6 | RF_LA + fiber | 1858 M | −S/1604 | −12.2% | 0.21 |
7 | RF_LA + RF_LA | 1926 M | −S/1671 | −12.5% | 0.21 |
OF: | 0.34 |
Item | Architecture | Cost (USD) | NPV M (USD) | IRR | BCR |
---|---|---|---|---|---|
1 | PLC + GPRS | 804 M | S/0 | 12.0% | 1.00 |
2 | RF mesh + GPRS | 1367 M | −S/564 | 3.4% | 0.64 |
3 | RF_LA + GPRS | 1847 M | −S/1042 | −0.5% | 0.49 |
4 | PLC + fiber | 832 M | −S/27 | 11.4% | 0.97 |
5 | RF mesh + fiber | 1396 M | −S/590 | 3.2% | 0.62 |
6 | RF_LA + fiber | 1858 M | −S/1053 | −0.6% | 0.48 |
7 | RF_LA + RF_LA | 1926 M | −S/1120 | −1.0% | 0.47 |
OF: | 1.00 |
Item | Architecture | Cost (USD) | NPV M (USD) | IRR | BCR |
---|---|---|---|---|---|
1 | PLC + GPRS | 804 M | S/592 | 24.5% | 1.60 |
2 | RF mesh + GPRS | 1367 M | S/28 | 12.4% | 1.02 |
3 | RF_LA + GPRS | 1847 M | −S/450 | 7.2% | 0.78 |
4 | PLC+ fiber | 832 M | S/565 | 23.6% | 1.56 |
5 | RF mesh+ fiber | 1396 M | S/1 | 12.0% | 1.00 |
6 | RF_LA+ fiber | 1858 M | −S/461 | 7.1% | 0.77 |
7 | RF_LA + RF_LA | 1926 M | −S/528 | 6.5% | 0.75 |
OF: | 1.60 |
Variable | Current ES Values (kWh/Month) | Constraint (kWh/Month) | Value for Max BCR (Ratio) | Value for BCR = 1 |
---|---|---|---|---|
Cpi | 82.27 | 900.0 | 900.0 | 461.5 |
Cpf | 82.27 | 900.0 | 900.0 | 461.5 |
Cmi_plc1 | 67.69 | 34.0 | 34.0 | 34.0 |
Cmi_plc3 | 188.89 | 94.0 | 94.0 | 94.0 |
Cmi_mesh1 | 88.88 | 44.0 | 88.9 | 88.9 |
Cmi_mesh3 | 188.89 | 94.0 | 188.9 | 188.9 |
Cmi_rf1 | 164.97 | 82.0 | 165.0 | 165.0 |
Cmi_rf3 | 538.49 | 269.0 | 538.5 | 538.5 |
%PNT | 2.73 | 5.0 | 5.0 | 5.0 |
Item | Architecture | Costs (USD) | NPV M (USD) | IRR | BCR |
---|---|---|---|---|---|
1 | PLC + GPRS | 391 M | −S/304 | −7.8% | 0.32 |
2 | RF mesh + GPRS | 448 M | −S/361 | −9.1% | 0.28 |
3 | RF_LA + GPRS | 853 M | −S/766 | −14.6% | 0.16 |
4 | PLC + fiber | 396 M | −S/308 | −7.9% | 0.32 |
5 | RF mesh + Fiber | 453 M | −S/366 | −9.2% | 0.28 |
6 | RF_LA + Fiber | 864 M | −S/777 | −14.7% | 0.16 |
7 | RF_LA + RF_LA | 931 M | −S/844 | −15.3% | 0.14 |
OF: | 0.32 |
Item | Architecture | Cost (USD) | NPV M (USD) | IRR | BCR |
---|---|---|---|---|---|
1 | PLC + GPRS | 271 M | −S/0 | 12.0% | 1.00 |
2 | RF mesh + GPRS | 448 M | −S/177 | 3.8% | 0.65 |
3 | RF_LA + GPRS | 853 M | −S/582 | −4.2% | 0.36 |
4 | PLC+ fiber | 276 M | −S/4 | 11.7% | 0.99 |
5 | RF mesh+ fiber | 453 M | −S/182 | 3.7% | 0.64 |
6 | RF_LA+ fiber | 864 M | −S/593 | −4.3% | 0.36 |
7 | RF_LA + RF_LA | 931 M | −S/660 | −5.1% | 0.33 |
OF: | 1.00 |
Item | Architecture | Cost (USD) | NPV M (USD) | IRR | BCR |
---|---|---|---|---|---|
1 | PLC + GPRS | 271 M | S/193 | 24.2% | 1.59 |
2 | RF mesh + GPRS | 448 M | S/15 | 12.6% | 1.03 |
3 | RF_LA + GPRS | 853 M | −S/389 | 2.4% | 0.57 |
4 | PLC+ fiber | 276 M | S/188 | 23.7% | 1.57 |
5 | RF mesh+ fiber | 453 M | S/11 | 12.5% | 1.02 |
6 | RF_LA+ fiber | 864 M | −S/400 | 2.2% | 0.56 |
7 | RF_LA + RF_LA | 931 M | −S/467 | 1.2% | 0.53 |
OF: | 1.59 |
Item/BCR | Architecture | LDS | SEAL | ADI | ELSE |
---|---|---|---|---|---|
1 | PLC + GPRS | 0.72 | 0.52 | 0.68 | 0.49 |
2 | RF mesh + GPRS | 0.45 | 0.33 | 0.45 | 0.31 |
3 | RF_LA + GPRS | 0.33 | 0.25 | 0.22 | 0.17 |
4 | PLC + fiber | 0.70 | 0.51 | 0.67 | 0.48 |
5 | RF mesh + fiber | 0.44 | 0.32 | 0.45 | 0.31 |
6 | RF_LA + fiber | 0.32 | 0.25 | 0.21 | 0.17 |
7 | RF_LA + RF_LA | 0.30 | 0.24 | 0.17 | 0.16 |
Item/NPV | Architecture | LDS | SEAL | ADI | ELSE |
---|---|---|---|---|---|
1 | PLC + GPRS | −S/121 | −S/473 | −S/25 | −S/168 |
2 | RF mesh + GPRS | −S/376 | −S/1037 | −S/66 | −S/345 |
3 | RF_LA + GPRS | −S/636 | −S/1515 | −S/189 | −S/750 |
4 | PLC + fiber | −S/131 | −S/500 | −S/27 | −S/172 |
5 | RF mesh + fiber | −S/386 | −S/1063 | −S/67 | −S/350 |
6 | RF_LA + fiber | −S/647 | −S/1526 | −S/200 | −S/761 |
7 | RF_LA + RF_LA | −S/714 | −S/1593 | −S/267 | −S/828 |
Item/IRR | Architecture | LDS | SEAL | ADI | ELSE |
---|---|---|---|---|---|
1 | PLC + GPRS | 4.96% | −1.21% | 3.99% | −2.1% |
2 | RF mesh + GPRS | −2.21% | −7.01% | −2.16% | −7.5% |
3 | RF_LA + GPRS | −6.09% | −9.83% | −10.07% | −13.3% |
4 | PLC + fiber | 4.53% | −1.56% | 3.70% | −2.3% |
5 | RF mesh + fiber | −2.39% | −7.16% | −2.30% | −7.6% |
6 | RF_LA + fiber | −6.22% | −9.89% | −10.49% | −13.4% |
7 | RF_LA + RF_LA | −6.96% | −10.21% | −12.64% | −14.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abarca, A.; Rodriguez, Y.P.M.; Ganvini, C. Optimization of Technologies for Implementing Smart Metering in Residential Electricity Supplies in Peru. Electricity 2025, 6, 20. https://doi.org/10.3390/electricity6020020
Abarca A, Rodriguez YPM, Ganvini C. Optimization of Technologies for Implementing Smart Metering in Residential Electricity Supplies in Peru. Electricity. 2025; 6(2):20. https://doi.org/10.3390/electricity6020020
Chicago/Turabian StyleAbarca, Alfredo, Yuri Percy Molina Rodriguez, and Cristhian Ganvini. 2025. "Optimization of Technologies for Implementing Smart Metering in Residential Electricity Supplies in Peru" Electricity 6, no. 2: 20. https://doi.org/10.3390/electricity6020020
APA StyleAbarca, A., Rodriguez, Y. P. M., & Ganvini, C. (2025). Optimization of Technologies for Implementing Smart Metering in Residential Electricity Supplies in Peru. Electricity, 6(2), 20. https://doi.org/10.3390/electricity6020020