Prediction and Analysis of Nuclear Explosion Radioactive Pollutant Diffusion Model
Abstract
:1. Introduction
2. Mathematical Principles of Diffusion Models
2.1. Basic Parameters of the Diffusion Model
2.1.1. Stable Cloud Geometry Data
2.1.2. Scale Distribution and Activity Distribution of Radioactive Particles
2.1.3. Scale Distribution and Activity Distribution of Radioactive Particles
2.2. Sedimentation Rate Diffusion Factor
2.2.1. Sedimentation Rate Function
2.2.2. Far-Field Correction
2.2.3. Vertical Diffusion
2.2.4. Turbulent Diffusion Correction
2.2.5. Lateral Diffusion Parameters
2.2.6. Sedimentation Rate Diffusion Factor
3. Programming and Verification
3.1. Programming
3.2. Model Verification
3.2.1. Sedimentation Rate Diffusion Factor Validation
3.2.2. Real Historical Data Verification
3.2.3. General Validation
- The maximum radioactive dose and the area of radioactive contamination increase with time in 1–6 h;
- A hot line of radioactive dose extends continuously along the downwind direction;
- The general trend of dose distribution along the direction of the hot line is a gradual decrease with increasing distance;
- The predicted map of radioactive deposition dose varies for each nuclear explosion;
- Radioactive deposition is strongly influenced by the equivalent dose, meteorological conditions, topographic environment, and blast mode.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ruff, T.A. Ending Nuclear Weapons before They End Us: Current Challenges and Paths to Avoiding a Public Health Catastrophe. J. Public Health Policy 2022, 43, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Boulton, F.; Dunn, T. Nuclear War and Public Health: Preparedness, Protection and the Case for Prevention. J. Public Health 2020, 42, e316–e322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Lancet. Attending to the Threat of Nuclear Weapons. Lancet 2021, 398, 465. [Google Scholar] [CrossRef] [PubMed]
- Researchers: Help Free the World of Nuclear Weapons. Nature 2020, 584, 7. Available online: https://www.nature.com/articles/d41586-020-02274-9 (accessed on 26 December 2022). [CrossRef] [PubMed]
- Colglazier, E.W. War and Peace in the Nuclear Age. Science 2018, 359, 613. [Google Scholar] [CrossRef] [Green Version]
- Coupe, J.; Stevenson, S.; Lovenduski, N.S.; Rohr, T.; Harrison, C.S.; Robock, A.; Olivarez, H.; Bardeen, C.G.; Toon, O.B. Nuclear Niño Response Observed in Simulations of Nuclear War Scenarios. Commun. Earth Environ. 2021, 2, 18. [Google Scholar] [CrossRef]
- Harrison, C.S.; Rohr, T.; DuVivier, A.; Maroon, E.A.; Bachman, S.; Bardeen, C.G.; Coupe, J.; Garza, V.; Heneghan, R.; Lovenduski, N.S. A New Ocean State after Nuclear War. AGU Adv. 2022, 3, e2021AV000610. [Google Scholar] [CrossRef]
- Xia, L.; Robock, A.; Scherrer, K.; Harrison, C.S.; Bodirsky, B.L.; Weindl, I.; Jägermeyr, J.; Bardeen, C.G.; Toon, O.B.; Heneghan, R. Global Food Insecurity and Famine from Reduced Crop, Marine Fishery and Livestock Production Due to Climate Disruption from Nuclear War Soot Injection. Nat. Food 2022, 3, 586–596. [Google Scholar] [CrossRef]
- Scherrer, K.J.N.; Harrison, C.S.; Heneghan, R.F.; Galbraith, E.; Bardeen, C.G.; Coupe, J.; Jägermeyr, J.; Lovenduski, N.S.; Luna, A.; Robock, A.; et al. Marine Wild-Capture Fisheries after Nuclear War. Proc. Natl. Acad. Sci. USA 2020, 117, 29748–29758. [Google Scholar] [CrossRef]
- Prăvălie, R. Nuclear Weapons Tests and Environmental Consequences: A Global Perspective. Ambio 2014, 43, 729–744. [Google Scholar] [CrossRef]
- Livingston, H.D.; Anderson, R.F. Large Particle Transport of Plutonium and Other Fallout Radionuclides to the Deep Ocean. Nature 1983, 303, 228–231. [Google Scholar] [CrossRef]
- Pittauer, D.; Tims, S.G.; Froehlich, M.B.; Fifield, L.K.; Wallner, A.; McNeil, S.D.; Fischer, H.W. Continuous Transport of Pacific-Derived Anthropogenic Radionuclides Towards the Indian Ocean. Sci. Rep. 2017, 7, 44679. [Google Scholar] [CrossRef] [Green Version]
- Glasstone, S.; Dolan, P.J. The Effects of Nuclear Weapons; US Department of Defense, Energy Research and Development Administration: Washington, DC, USA, 1977.
- Imanaka, T.; Fukutani, S.; Yamamoto, M.; Sakaguchi, A.; Hoshi, M. External Radiation in Dolon Village Due to Local Fallout from the First Ussr Atomic Bomb Test in 1949. J. Radiat. Res. 2006, 47 (Suppl. A), A121–A127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willis, J.C. The History of Fallout Prediction; Air Force Inst Of Tech Wright-Pattersonafb Oh School Of Engineering: Dayton, OH, USA, 1979; Available online: https://apps.dtic.mil/sti/citations/ADA079560 (accessed on 26 December 2022).
- Bouville, A. Fallout from Nuclear Weapons Tests: Environmental, Health, Political, and Sociological Considerations. Health Phys. 2020, 118, 360–381. [Google Scholar] [CrossRef] [PubMed]
- Drozdovitch, V.; Bouville, A.; Taquet, M.; Gardon, J.; Xhaard, C.; Ren, Y.; Doyon, F.; de Vathaire, F. Thyroid Doses to French Polynesians Resulting from Atmospheric Nuclear Weapons Tests: Estimates Based on Radiation Measurements and Population Lifestyle Data. Health Phys. 2021, 120, 34–55. [Google Scholar] [CrossRef]
- Bergan, T.D. Radioactive Fallout in Norway from Atmospheric Nuclear Weapons Tests. J. Environ. Radioact. 2002, 60, 189–208. [Google Scholar] [CrossRef]
- Bouville, A.; Beck, H.L.; Anspaugh, L.R.; Gordeev, K.; Shinkarev, S.; Thiessen, K.M.; Hoffman, F.O.; Simon, S.L. A Methodology for Estimating External Doses to Individuals and Populations Exposed to Radioactive Fallout from Nuclear Detonations. Health Phys. 2022, 122, 54–83. [Google Scholar] [CrossRef]
- Brandt, J.; Bastrup-Birk, A.; Christensen, J.H.; Mikkelsen, T.; Thykier-Nielsen, S.; Zlatev, Z. Testing the Importance of Accurate Meteorological Input Fields and Parameterizations in Atmospheric Transport Modelling Using Dream—Validation against Etex-1. Atmos. Environ. 1998, 32, 4167–4186. [Google Scholar] [CrossRef]
- Stohl, A.; Eckhardt, S.; Forster, C.; James, P.; Spichtinger, N.; Seibert, P. A Replacement for Simple Back Trajectory Calculations in the Interpretation of Atmospheric Trace Substance Measurements. Atmos. Environ. 2002, 36, 4635–4648. [Google Scholar] [CrossRef]
- Leelőssy, Á.; Lagzi, I.; Kovács, A.; Mészáros, R. A Review of Numerical Models to Predict the Atmospheric Dispersion of Radionuclides. J. Environ. Radioact. 2018, 182, 20–33. [Google Scholar] [CrossRef]
- Jeong, H.; Kim, E.; Park, M.; Jeong, H.; Hwang, W.; Han, M. Numerical Simulation of Air Pollutant Dispersion Using an in Situ Tracer Experiment at a Nuclear Site. Ann. Nucl. Energy 2014, 73, 1–6. [Google Scholar] [CrossRef]
- Elkhatib, H.; Awad, M.A.; El-Samanoudy, M.A. Modeling of Atmospheric Dispersion and Radiation Dose for a Hypothetical Accident in Radioisotope Production Facility. Prog. Nucl. Energy 2021, 134, 103674. [Google Scholar] [CrossRef]
- Cao, B.; Cui, W.; Chen, C.; Chen, Y. Development and Uncertainty Analysis of Radionuclide Atmospheric Dispersion Modeling Codes Based on Gaussian Plume Model. Energy 2020, 194, 116925. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, R.; Su, T.; Jiang, J. Gas Diffusion Model Based on an Improved Gaussian Plume Model for Inverse Calculations of the Source Strength. J. Loss Prev. Process Ind. 2022, 75, 104677. [Google Scholar] [CrossRef]
- Auxier, J.P.; Auxier, J.D., 2nd; Hall, H.L. Review of Current Nuclear Fallout Codes. J. Environ. Radioact. 2017, 171, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Pugh, G.E.; Galliano, R.J. An Analytic Model of Close-in Deposition of Fallout for Use in Operational-Type Studies; WEAPONS SYSTEMS EVALUATION GROUP (DEFENSE) ARLINGTON VA; Weapons Systems Evaluation Group Inst. for Defense Analyses: Washington, DC, USA, 1959. [Google Scholar]
- Ruotanen, N.H. An Improvement to the WSEG Fallout Model Low Yield Prediction Capability. Master’s Thesis, School of Engineering, Dayton, OH, USA, 1978. [Google Scholar]
- Bridgman, C.J.; Bigelow, W.S. A New Fallout Prediction Model. Health Phys. 1982, 43, 205–218. [Google Scholar] [CrossRef]
- Norment, H.G. DNAF-1: An Analytical Fallout Prediction Model and Code; Final report 12 Mar 80-31 Oct 81; Atmospheric Science Associates: Bedford, MA, USA, 1981. [Google Scholar]
- Norment, H.G. DELFIC: Department of Defense Fallout Prediction System. Volume I—Fundamentals; Final Report 16 Jan–31 Dec 79; Atmospheric Science Associates: Bedford, MA, USA, 1979. [Google Scholar]
- Hawthorne, H.A. DELFIC: Department of Defense Fallout Prediction System. Volume II. User’s Manual; Final Report 16 Jan–31 Dec 79; Atmospheric Science Associates: Bedford, MA, USA, 1979. [Google Scholar]
- Lee, H.; Wong, P.W.; Brown, S.L. Simplified Fallout Computational Systems for Damage Assessment; Stanford Research Inst.: Menlo Park, CA, USA, 1971. [Google Scholar]
- Lee, H.; Wong, P.W.; Brown, S.L. Seer II: A New Damage Assessment Fallout Model; Stanford Research Inst.: Menlo Park, CA, USA, 1972. [Google Scholar]
- Homann, S.G. HotSpot Health Physics Codes; Lawrence Livermore National Lab.(LLNL): Livermore, CA, USA, 2010. [Google Scholar]
- Norment, H.G. SIMFIC: A Simple, Efficient Fallout Prediction Model. Final Report, 16 January–31 December 1979; Atmospheric Science Associates: Bedford, MA, USA, 1979. [Google Scholar]
- Mészáros, R.; Leelőssy, Á.; Kovács, T.; Lagzi, I. Predictability of the Dispersion of Fukushima-Derived Radionuclides and Their Homogenization in the Atmosphere. Sci. Rep. 2016, 6, 19915. [Google Scholar] [CrossRef] [Green Version]
- Saito, K.; Shimbori, T.; Draxler, R. Jma’s Regional Atmospheric Transport Model Calculations for the Wmo Technical Task Team on Meteorological Analyses for Fukushima Daiichi Nuclear Power Plant Accident. J. Environ. Radioact. 2015, 139, 185–199. [Google Scholar] [CrossRef] [Green Version]
- Leadbetter, S.J.; Hort, M.C.; Jones, A.R.; Webster, H.N.; Draxler, R.R. Sensitivity of the Modelled Deposition of Caesium-137 from the Fukushima Dai-Ichi Nuclear Power Plant to the Wet Deposition Parameterisation in Name. J. Environ. Radioact. 2015, 139, 200–211. [Google Scholar] [CrossRef]
- Draxler, R.; Arnold, D.; Chino, M.; Galmarini, S.; Hort, M.; Jones, A.; Leadbetter, S.; Malo, A.; Maurer, C.; Rolph, G.; et al. World Meteorological Organization’s Model Simulations of the Radionuclide Dispersion and Deposition from the Fukushima Daiichi Nuclear Power Plant Accident. J. Environ. Radioact. 2015, 139, 172–184. [Google Scholar] [CrossRef]
- Mikkelsen, T.; Thykier-Nielsen, S.; Astrup, P.; Santabárbara, J.M.; Sørensen, J.H.; Rasmussen, A.; Robertson, L.; Ullerstig, A.; Deme, S.; Martens, R.G.J.; et al. Met-Rodos: A Comprehensive Atmospheric Dispersion Module. Radiat. Prot. Dosim. 1997, 73, 45–55. [Google Scholar] [CrossRef]
- Leelossy, A.; Mészáros, R.; Lagzi, I. Short and Long Term Dispersion Patterns of Radionuclides in the Atmosphere around the Fukushima Nuclear Power Plant. J. Environ. Radioact. 2011, 102, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Connan, O.; Smith, K.; Organo, C.; Solier, L.; Maro, D.; Hébert, D. Comparison of Rimpuff, Hysplit, Adms Atmospheric Dispersion Model Outputs, Using Emergency Response Procedures, with (85)Kr Measurements Made in the Vicinity of Nuclear Reprocessing Plant. J. Environ. Radioact. 2013, 124, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Park, M.; Jeong, H.; Hwang, W.; Kim, E.; Han, M. Terrain and Building Effects on the Transport of Radioactive Material at a Nuclear Site. Ann. Nucl. Energy 2014, 68, 157–162. [Google Scholar] [CrossRef]
- Moresco, P. Description of Nucleation, Growth and Coagulation Processes in the Modeling of Debris Formation after a Nuclear Burst; Oak Ridge National Lab.(ORNL): Oak Ridge, TN, USA, 2021. [Google Scholar]
- Taylor, G.I. Dynamics of a Mass of Hot Gas Rising in Air; Technical Information Division, Oak Ridge Operations: Oak Ridge, TN, USA, 1946; Volume 919.
- Batchelor, G.K. Heat Convection and Buoyancy Effects in Fluids. Q. J. R. Meteorol. Soc. 1954, 80, 339–358. [Google Scholar] [CrossRef]
- Moresco, P. A Vorticity Description of the Nuclear Cloud; Oak Ridge National Lab.(ORNL): Oak Ridge, TN, USA, 2022. [Google Scholar]
- Turner, J.S. Buoyant Vortex Rings. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1957, 239, 61–75. [Google Scholar]
- Onufriev, A.T. Theory of the Motion of a Vortex Ring under Gravity. Rise of the Cloud from a Nuclear Explosion. J. Appl. Mech. Tech. Phys. 1967, 8, 1–7. [Google Scholar] [CrossRef]
- Kansa, E.J. Time-Dependent Buoyant Puff Model for Explosive Sources; Lawrence Livermore National Laboratory: Livermore, CA, USA, 1997. [Google Scholar]
- Gifford, F.A. Horizontal Diffusion in the Atmosphere: A Lagrangian-Dynamical Theory. Atmos. Environ. (1967) 1982, 16, 505–512. [Google Scholar] [CrossRef]
- Hawthorne, H.A. Compilation of Local Fallout Data from Test Detonations 1945–1962 Extracted from Dasa 1251. Volume II. Oceanic U. S. Tests; General Electric Co.: Santa Barbara, CA, USA, 1979. [Google Scholar]
- Hawthorne, H.A. Compilation of Local Fallout Data from Test Detonations 1945–1962 Extracted from Dasa 1251. Volume I. Continental Us Tests; General Electric Co.: Santa Barbara, CA, USA, 1979. [Google Scholar]
Median Particle Radius/μm | Radioactivity Percentage Fi/% | Vg/(m/s) | Median Particle Radius/μm | Radioactivity Percentage Fi/% | Vg/(m/s) |
---|---|---|---|---|---|
4.3 | 9.35 | 0.006 | 70.8 | 3.95 | 0.915 |
8.6 | 7.99 | 0.023 | 84.4 | 3.87 | 1.444 |
13 | 6.44 | 0.053 | 101 | 3.8 | 1.427 |
17.7 | 5.65 | 0.096 | 122 | 3.73 | 1.78 |
22.7 | 5.15 | 0.153 | 149 | 3.68 | 2.228 |
28.3 | 4.8 | 0.224 | 185.7 | 3.62 | 2.816 |
34.6 | 4.55 | 0.306 | 238.7 | 3.58 | 3.622 |
41.7 | 5.35 | 0.391 | 323.8 | 3.53 | 4.812 |
Shot | Time | Height of Burst (m) | Total Yield (kt) | Average Wind Speed (m/s) | Average Wind Direction (°) | Average Wind Shear (s−1) |
---|---|---|---|---|---|---|
Sugar | 19 November 1951 | 1.067 | 1.2 | 13.1 | 14.6 | 0.00311 |
Koon | 7 April 1954 | 4.145 | 150 | 6.2 | 11.3 | 0.00133 |
Zuni | 28 May 1956 | 2.743 | 3380 | 4.9 | −20.0 | 0.00225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Liu, W.; Li, X.; Yang, M.; Li, P.; Wu, Y.; Chen, X. Prediction and Analysis of Nuclear Explosion Radioactive Pollutant Diffusion Model. Pollutants 2023, 3, 43-56. https://doi.org/10.3390/pollutants3010004
Zheng Y, Liu W, Li X, Yang M, Li P, Wu Y, Chen X. Prediction and Analysis of Nuclear Explosion Radioactive Pollutant Diffusion Model. Pollutants. 2023; 3(1):43-56. https://doi.org/10.3390/pollutants3010004
Chicago/Turabian StyleZheng, Yang, Wei Liu, Xiaoqiang Li, Ming Yang, Peng Li, Yunhui Wu, and Xiaolei Chen. 2023. "Prediction and Analysis of Nuclear Explosion Radioactive Pollutant Diffusion Model" Pollutants 3, no. 1: 43-56. https://doi.org/10.3390/pollutants3010004
APA StyleZheng, Y., Liu, W., Li, X., Yang, M., Li, P., Wu, Y., & Chen, X. (2023). Prediction and Analysis of Nuclear Explosion Radioactive Pollutant Diffusion Model. Pollutants, 3(1), 43-56. https://doi.org/10.3390/pollutants3010004