Phase Change Material Nanocomposites for Thermal Energy Storage Applications †
Abstract
:1. Introduction
2. Methods
2.1. Blending
2.2. Microencapsulation
2.3. Impregnation
3. Applications
3.1. Building
3.2. Solar Devices
3.3. Electronic
3.4. Textiles
3.5. State-of-the-Art Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Amberkar, T.; Mahanwar, P. Manufacturing Technology of Shape-Stabilized Phase Change Materials. Int. J. Res. Rev. 2018, 5, 24–34. [Google Scholar]
- Amberkar, T.; Mahanwar, P. Review on Thermal Energy Storing Phase Change Material-Polymer Composites in Packaging Applications. Mater. Proc. 2021, 7, 14. [Google Scholar] [CrossRef]
- Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67–123. [Google Scholar] [CrossRef]
- Jegadheeswaran, S.; Sundaramahalingam, A.; Pohekar, S.D. High-conductivity nanomaterials for enhancing thermal performance of latent heat thermal energy storage systems. J. Therm. Anal. Calorim. 2019, 138, 1137–1166. [Google Scholar] [CrossRef]
- Elarem, R.; Alqahtani, T.; Mellouli, S.; El Awadi, G.A.; Algarni, S.; Kolsi, L. Experimental investigations on thermophysical properties of nano-enhanced phase change materials for thermal energy storage applications. Alex. Eng. J. 2022, 61, 7037–7044. [Google Scholar] [CrossRef]
- Aurangzeb, M.; Noor, F.; Qamar, A.; Shah, A.N.; Kumam, P.; Shah, Z.; Shutaywi, M. Investigation of enhancement in the thermal response of phase change materials through nano powders. Case Stud. Therm. Eng. 2022, 29, 101654. [Google Scholar] [CrossRef]
- Suresh Kumar, K.R.; Parameshwaran, R.; Kalaiselvam, S. Preparation and characterization of hybrid nanocomposite embedded organic methyl ester as phase change material. Sol. Energy Mater. Sol. Cells 2017, 171, 148–160. [Google Scholar] [CrossRef]
- Bose, P.; Amirtham, V.A. Effect of titania-silver nanocomposite particle concentration and thermal cycling on characteristics of sodium dodecyl sulfate added paraffin wax thermal energy storage material. Energy Storage 2021, 3, 4–6. [Google Scholar] [CrossRef]
- Vaka, M.; Walvekar, R.; Khalid, M.; Jagadish, P.; Low, J.H. Corrosion, rheology, and thermal ageing behaviour of the eutectic salt-based graphene hybrid nanofluid for high-temperature TES applications. J. Mol. Liq. 2021, 334, 116156. [Google Scholar] [CrossRef]
- Sabagh, S.; Bahramian, A.R.; Madadi, M.H. Improvement in phase-change hybrid nanocomposites material based on polyethylene glycol/epoxy/graphene for thermal protection systems. Iran. Polym. J. (Engl. Ed.) 2020, 29, 161–169. [Google Scholar] [CrossRef]
- Dhivya, S.; Hussain, S.I.; Jeya Sheela, S.; Kalaiselvam, S. Experimental study on microcapsules of Ag doped ZnO nanomaterials enhanced Oleic-Myristic acid eutectic PCM for thermal energy storage. Thermochim. Acta 2019, 671, 70–82. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Zhang, T.; Zhang, D.; Ji, H. Supercooling suppression and thermal behavior improvement of erythritol as phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2017, 171, 60–71. [Google Scholar] [CrossRef]
- Meng, X.; Qin, S.; Fan, H.; Huang, Z.; Hong, J.; Xu, X.; Ouyang, X.; Chen, D.Z. Long alkyl chain-grafted carbon nanotube-decorated binary-core phase-change microcapsules for heat energy storage: Synthesis and thermal properties. Sol. Energy Mater. Sol. Cells 2020, 212, 110589. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, C.; Rao, Z. Preparation and Characterization of n-Nonadecane/CaCO3 Microencapsulated Phase Change Material for Thermal Energy Storage. ChemistrySelect 2019, 4, 8482–8492. [Google Scholar] [CrossRef]
- Deng, H.; Guo, Y.; He, F.; Yang, Z.; Fan, J.; He, R.; Zhang, K.; Yang, W. Paraffin@graphene/silicon rubber form-stable phase change materials for thermal energy storage. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 626–631. [Google Scholar] [CrossRef]
- Zhao, Q.; He, F.; Zhang, Q.; Fan, J.; He, R.; Zhang, K.; Yan, H.; Yang, W. Microencapsulated phase change materials based on graphene Pickering emulsion for light-to-thermal energy conversion and management. Sol. Energy Mater. Sol. Cells 2019, 203, 110204. [Google Scholar] [CrossRef]
- Sun, N.; Xiao, Z. Synthesis and Performances of Phase Change Materials Microcapsules with a Polymer/BN/TiO2 Hybrid Shell for Thermal Energy Storage. Energy Fuels 2017, 31, 10186–10195. [Google Scholar] [CrossRef]
- Hussain, S.I.; Kalaiselvam, S. Nanoencapsulation of oleic acid phase change material with Ag2O nanoparticles-based urea formaldehyde shell for building thermal energy storage. J. Therm. Anal. Calorim. 2020, 140, 133–147. [Google Scholar] [CrossRef]
- Ren, X.; Shen, H.; Yang, Y.; Yang, J. Study on the properties of a novel shape-stable epoxy resin sealed expanded graphite/paraffin composite PCM and its application in buildings. Phase Transit. 2019, 92, 581–594. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Ling, Z.; Fang, X.; Zhang, Z. Microinfiltration of Mg(NO3)2·6H2O into g-C3N4 and macroencapsulation with commercial sealants: A two-step method to enhance the thermal stability of inorganic composite phase change materials. Appl. Energy 2019, 253, 113540. [Google Scholar] [CrossRef]
- Chin, C.O.; Yang, X.; Paul, S.C.; Susilawati; Wong, L.S.; Kong, S.Y. Development of thermal energy storage lightweight concrete using paraffin-oil palm kernel shell-activated carbon composite. J. Clean. Prod. 2020, 261, 121227. [Google Scholar] [CrossRef]
- Wang, W.; Cai, Y.; Du, M.; Hou, X.; Liu, J.; Ke, H.; Wei, Q. Ultralight and Flexible Carbon Foam-Based Phase Change Composites with High Latent-Heat Capacity and Photothermal Conversion Capability. ACS Appl. Mater. Interfaces 2019, 11, 31997–32007. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Qi, G.Q.; Bao, R.Y.; Yi, K.; Li, M.; Peng, L.; Cai, Z.; Yang, M.B.; Wei, D.; Yang, W. Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials. Energy Storage Mater. 2018, 13, 88–95. [Google Scholar] [CrossRef]
- Ren, M.; Liu, Y.; Gao, X. Incorporation of phase change material and carbon nanofibers into lightweight aggregate concrete for thermal energy regulation in buildings. Energy 2020, 197, 117262. [Google Scholar] [CrossRef]
- Cui, H.; Memon, S.A.; Liu, R. Development, mechanical properties and numerical simulation of macro encapsulated thermal energy storage concrete. Energy Build. 2015, 96, 162–174. [Google Scholar] [CrossRef]
- Mohseni, E.; Tang, W.; Wang, S. Development of thermal energy storage lightweight structural cementitious composites by means of macro-encapsulated PCM. Constr. Build. Mater. 2019, 225, 182–195. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, C.B.; Ding, Z.Y.; Liu, J. Study on the thermal properties of paraffin/ceramsite phase change concerte. Adv. Mater. Res. 2014, 838, 91–95. [Google Scholar] [CrossRef]
- Poyyamozhi, N.; Karthikeyan, A. Performance comparison of AgTiO2 and CNT based latent heat materials on a solar pond. Mater. Today Proc. 2021, 47, 4548–4551. [Google Scholar] [CrossRef]
- Tangsiriratana, E.; Skolpap, W.; Patterson, R.J.; Sriprapha, K. Thermal properties and behavior of microencapsulated sugarcane wax phase change material. Heliyon 2019, 5, e02184. [Google Scholar] [CrossRef] [Green Version]
- Yeh, C.Y.; Boonk, K.J.F.; Sadeghi, G.; Mehrali, M.; Shahi, M.; Brem, G.; Mahmoudi, A. Experimental and numerical analysis of thermal performance of shape stabilized PCM in a solar thermal collector. Case Stud. Therm. Eng. 2022, 30, 101706. [Google Scholar] [CrossRef]
- Bhave, A.G.; Kale, C.K. Development of a thermal storage type solar cooker for high temperature cooking using solar salt. Sol. Energy Mater. Sol. Cells 2020, 208, 110394. [Google Scholar] [CrossRef]
- Fredi, G.; Dorigato, A.; Fambri, L.; Pegoretti, A. Wax confinement with carbon nanotubes for phase changing epoxy blends. Polymers 2017, 9, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atinafu, D.G.; Yun, B.Y.; Kang, Y.; Wi, S.; Kim, S. Three-dimensional hybrid carbon nanocomposite-based intelligent composite phase change material with leakage resistance, low electrical resistivity, and high latent heat. J. Ind. Eng. Chem. 2021, 98, 435–443. [Google Scholar] [CrossRef]
- Hussain, S.I.; Roseline, A.A.; Kalaiselvam, S. Bifunctional nanoencapsulated eutectic phase change material core with SiO2/SnO2 nanosphere shell for thermal and electrical energy storage. Mater. Des. 2018, 154, 291–301. [Google Scholar] [CrossRef]
- Rezaie, A.B.; Montazer, M. In situ incorporation and loading of copper nanoparticles into a palmitic–lauric phase-change material on polyester fibers. J. Appl. Polym. Sci. 2019, 136, 46951. [Google Scholar] [CrossRef]
- Rezaei, B.; Askari, M.; Shoushtari, A.M.; Malek, R.A.M. The effect of diameter on the thermal properties of the modeled shape-stabilized phase change nanofibers (PCNs). J. Therm. Anal. Calorim. 2014, 118, 1619–1629. [Google Scholar] [CrossRef]
- Salimian, S.; Montazer, M.; Rashidi, A.S.; Soleimani, N.; Bashiri Rezaie, A. PCM nanofibrous composites based on PEG/PVA incorporated by TiO2/Ag nanoparticles for thermal energy management. J. Appl. Polym. Sci. 2021, 138, 51357. [Google Scholar] [CrossRef]
- Wang, J.; Xu, J.; He, Y. Novel smart textile with ultraviolet shielding and thermo-regulation fabricated via electrospinning. J. Energy Storage 2021, 42, 103094. [Google Scholar] [CrossRef]
- Luo, F.; Yan, P.P.; Qian, Q.; Li, H.; Huang, B.; Chen, Q.; Wu, K.; Lu, M. Highly thermally conductive phase change composites for thermal energy storage featuring shape memory. Compos. Part A Appl. Sci. Manuf. 2020, 129, 105706. [Google Scholar] [CrossRef]
- Gu, J.; Wang, W.; Yu, D. Temperature control and low infrared emissivity double-shell phase change microcapsules and their application in infrared stealth fabric. Prog. Org. Coat. 2021, 159, 106439. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Wang, H.; Li, B. Microencapsulated -octadecane with TiO2-doped silk fibroin shell for thermal energy storage and UV-shielding. J. Phys. Chem. Solids 2019, 134, 97–104. [Google Scholar] [CrossRef]
- Lou, L.; Jiang, Z.; Zhang, Q.; Liu, D.; Zhou, Y.; Zhang, K.; He, R.; Fan, J.; Yan, H.; Yang, W. Phase change microcapsules with lead tungstate shell for gamma radiation shielding and thermal energy storage. Int. J. Energy Res. 2019, 43, 8398–8409. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amberkar, T.; Mahanwar, P. Phase Change Material Nanocomposites for Thermal Energy Storage Applications. Mater. Proc. 2022, 9, 8. https://doi.org/10.3390/materproc2022009008
Amberkar T, Mahanwar P. Phase Change Material Nanocomposites for Thermal Energy Storage Applications. Materials Proceedings. 2022; 9(1):8. https://doi.org/10.3390/materproc2022009008
Chicago/Turabian StyleAmberkar, Tejashree, and Prakash Mahanwar. 2022. "Phase Change Material Nanocomposites for Thermal Energy Storage Applications" Materials Proceedings 9, no. 1: 8. https://doi.org/10.3390/materproc2022009008
APA StyleAmberkar, T., & Mahanwar, P. (2022). Phase Change Material Nanocomposites for Thermal Energy Storage Applications. Materials Proceedings, 9(1), 8. https://doi.org/10.3390/materproc2022009008