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Abstract: Thermal losses significantly affect the performance efficiency of solar devices, electronic
circuits, building materials, air conditioners, refrigerators, etc. Improving thermal buffering capacity
is the remedy for this problem. It is achieved by incorporating phase change materials (PCMs).
PCMs can absorb, accumulate, or emit latent heat during the phase transition process at a specific
temperature range, making them suitable for thermal energy storage. However, PCMs have two
major drawbacks that need to be rectified before use. The first disadvantage is leakage of molten
PCM, and the second is low thermal conductivity. Both problems can be resolved by preparing
PCM nanocomposites. The strategies of nanocomposite preparation can be briefly classified into
three methods, namely blending, encapsulation, and impregnation. The review paper discusses
the effect of nanomaterial morphology on the form-stabilization of PCM. The nanomaterials can
modify thermal conductivity, electrical conductivity, and mechanical properties as per application
requirements. This article highlights the benefits of using thermal energy storing nanocomposites
in widely used application areas such as textiles, building materials, electronics systems, and solar
energy storage devices. They can also be utilized for niche applications such as shape memory
polymers and infrared thermal stealth.

Keywords: phase change material; thermal energy storage; latent heat; nanocomposite

1. Introduction

Fossil fuel-based conventional energy resources are available in limited locations
worldwide. After the industrial revolution, the demand for conventional energy resources
is increasing yearly. The threat of their depletion and increasing efforts to reduce carbon
footprint pave the way for developing energy-efficient technologies. Reducing thermal
waste can be a helpful step in this direction. Thermal energy storage (TES) using latent heat
storing phase change materials (PCMs) has been successfully demonstrated for reducing
thermal waste [1,2]. In a narrow temperature range, PCMs can receive, accumulate, or
release latent heat during the phase transition process, making them appropriate for
TES. In the phase transition process, probable leakage of molten PCM reduces TES in
subsequent operations. PCM is often engulfed in another container to attenuate leakage.
This process is known as form-stabilization or shape-stabilization of PCM. The container of
PCM contributes to the composite properties of form-stabilized PCM.

In the quest to synthesize composite PCM with high TES potential and thermophysical
properties essential for applications, nanomaterials emerged as promising additives due
to their high thermal conductivity and vast range of tailorable properties. The thermal,
mechanical, electrical, morphological, and various properties of form-stabilized PCM can
be modified with the incorporation of nanomaterials. The effects of particle morphology,
aspect ratio, reactivity and material-specific properties on shape-stabilized PCMs have
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been studied by different research studies. The methods of incorporating nanomaterials in
these studies can be classified as blending, encapsulation, and impregnation. Each method
displayed different effects on the crystalline structure of form-stabilized PCM. Thus, the
thermophysical characteristics of shape-stabilized PCMs differed from the method of
preparation. The current review paper studies different form-stabilization methods to
study these thermophysical properties. The nanoenhanced PCMs find applications in
different areas, which are discussed in the last section of the paper.

2. Methods

PCMs have low thermal conductivity [3]. The high aspect ratio, large surface area,
modifiable chemical structure, and nanopores present in nanomaterials help in forming
form-stabilized PCM by different methods. All these methods give a nanocomposite that
tether the leakage of molten PCM. The individual process of form-stabilization and its
effects on nanocomposite characteristics can be studied in detail in the following sections.

2.1. Blending

Thermally conductive nanomaterials can be dispersed into the PCM matrix to im-
prove the thermal response time of nanocomposite. The nanomaterials used in most of the
blending studies include aluminum, copper, silver, gold, CuO, Al2O3, TiO2, Fe2O3, Fe3O4,
SiO2, ZnO, BN, AlN, SiC, carbon nanofiber (CNF), carbon nanotubes (CNT), graphene
nanoplatelets, graphene oxide (GO), and expanded graphite (EG) nanoparticles [4]. The
recent studies on the synthesis of PCM nanocomposites prepared by blending are discussed
in this section. The pristine crystalline metal nanoparticles have good thermal conduc-
tivity; their cost is also lower than other synthesized nanomaterials such as CNTs, CNFs.
Considering this fact, a research group synthesized PCM nanocomposite by dispersing
0.1–5% Al and Cu nanomaterials in the PCM matrix separately [5]. This study revealed that
excess nanomaterial loading reduces latent heat storing capacity and increases dynamic
viscosity of PCM after a certain level. By considering all these factors, the optimized con-
centration of Al and Cu nanoparticles was determined to be 2% and 1%, respectively. The
nanocomposites prepared with optimized concentration level balance merits and demerits
associated with nanomaterials dispersion. Aurangzeb et al. [6] studied the economic and
environmental characteristics of the incorporation of Fe3O4, Al2O3, and CNT on PCMs. The
thermal conductivity of Fe3O4, Al2O3, and CNT nanoparticles were 6 W/mK, 35 W/mK,
and 3400 W/mK, respectively. The heat transfer is enhanced by a higher percentage
of CNT-based nanocomposite due to its higher thermal conductivity. The running cost
and energy expenditure of latent heat storage tank (LHST) were lowest with PCM-CNT
nanocomposite. The increase in heat flow with nanocomposite is the reason for the reduced
energy consumption. If the LHST operated for 10 h/day, the CO2 generation cost avoided
for RT 26-CNT and coco-CNT formulations is about
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1331, respectively.
The older studies of blending are based on dispersing commercially available nanoma-

terials only. Recent research articles have modified the structural skeleton of nanomaterials
by chemical reaction. The modified geometry of nanomaterial improves the thermal char-
acteristics of the composite. Suresh Kumar et al. [7] synthesized copper-titania hybrid
nanomaterial with fin-like geometry by reacting titania and copper acetate. The geometry
can be observed from Figure 1 in scanning electron microscope (SEM) image. When the
prepared nanomaterial was redispersed in methyl cinnamate PCM, improvement in the
phase transition process was observed. Heat transfer time and supercooling degree were
reduced with hybrid nanomaterial incorporated composite. The nanocomposite’s thermal
conductivity improved to 0.347 W/mK. Bose and Amirtham [8] prepared silver-titania
nanomaterial with spherical morphology. Silver nanoparticles were prepared from the
AgNO3 solution in the presence of TiO2 nanoparticle dispersion. The X-ray diffraction
(XRD) and SEM analysis confirm the adsorption of silver nanoparticles on the titanium
layer. The synthesized hybrid nanoparticles were dispersed in paraffin wax with sodium
dodecyl sulfate (SDS) surfactant. The surfactant improves physical interaction between
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the PCM matrix and hybrid nanoparticles. Fourier Transform Infrared (FTIR) analysis
confirms physical interaction between components. The thermogravimetric analysis (TGA)
showed increase in thermal stability of nanocomposite with SDS presence. The hybrid
nanoparticles improve the TES density and heat transfer speed of the composite. Vaka
et al. [9] studied the effect of GO/TiO2 hybrid nanoparticles on eutectic PCM salt solution.
The TiO2 nanoparticles were formed from n-butoxide in the presence of GO dispersion.
The hydrothermal process developed GO/TiO2 hybrid nanoparticles. The metal corrosion
problem due to the presence of eutectic PCM salt solution was minimized with the addition
of hybrid nanoparticles. Its high surface area increases the thermal barrier between solid
and liquid molecules. The protective layer formed at the interface of the metal surface by
hybrid nanomaterials reduces the corrosion.
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Figure 1. Fin-like morphology of copper-titania nanoparticles. Adapted from [7].

Blended PCM nanocomposites reduce leakage. The tortuous structural paths in-
corporated by nanomaterial blending tether leakage of molten PCM. Sabagh et al. [10]
investigated the characteristics of a polyethylene glycol (PEG), epoxy (EP), EG, and GO
constituting composite. By stirring in the solvent, EG and GO were suspended in molten
PCM for the preparation of the composite. The solvent was then evaporated by heating. At
70 ◦C, epoxy resin and curing agent were added. To make the composite, the produced
mixture was molded and cured for 24 h at 30 ◦C and 4 h at 120 ◦C consecutively. The
existence of cured epoxy’s capillary force, PEG-epoxy hydrogen bonding, and high surface
area to volume ratio of EG inhibited PCM leakage above its melting point. PEG leakage is
prevented by GO due to polymer chain entrapment between GO platelets, capillary force,
and hydrogen bonding contact. The structure of the composite system is represented in
Figure 2. Increasing the epoxy content of the sample reduces leakage by 43%. It also reduces
normalized enthalpy, computed on the basis of the proportion of PCM in the composite, by
15%. This is due to greater encapsulation and reduced nucleation as epoxy concentration
increases. Samples with a smaller proportion of epoxy, on the other hand, exhibited a
2% drop in normalized enthalpy. This sample’s leakage test revealed just 8% leakage as
compared to pure PEG.
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2.2. Microencapsulation

Nanoparticles can be blended with PCM to form the core of microcapsules. Long
chain fatty acid-based PCMs suffer from supercooling problems. These organic PCMs have
low thermal conductivity. Dhivya et al. [11] proposed a method for improving thermal
characteristics of these PCMs. The research group formed an eutectic mixture of these
PCMs for reducing the supercooling degree. The low thermal conductivity of PCMs was
improved with incorporation of Ag-doped ZnO nanoparticles. The choice of substitution
with Ag was made for preparing P-type conductive ZnO and achieving a synergistic surface
plasmon effect. The ultrasonicated eutectic nanocomposite was further microencapsulated
with melamine-formaldehyde (MF) shell by in situ polymerization. The 3–5 µm sized
microcapsules could store 75–80 J/g heat. The method improved thermal conductivity
of eutectic from 0.2513 W/mK to 0.3735 W/mK. The presence of shell and nanoparticles
improved the thermal stability and thermal cycling performance of eutectic PCM. The
sugar alcohols, erythritol, possess higher heat storage enthalpy than widely used paraffin
wax and fatty acid-based PCMs. However, a high supercooling degree of about 100 ◦C is
detrimental for its use in practical applications. Wang et al. [12] improved the supercooling
characteristics of erythritol by 83.6% by preparing erythritol nanocomposites. The process
of preparation involved two main steps. In the first step, an emulsion with the core content
of erythritol and nucleating agent α-alumina nanoparticles was formed. The interface of the
emulsion was adsorbed with polysiloxane precursor formed by hydration. In the second
step, the polysiloxane precursor was polymerized with ultraviolet (UV) light for shell
formation around the PCM core. The prepared microencapsulated PCM (MPCM) had a
thermal conductivity of 0.84 W/mK, which was 29.2% more than erythritol. In MPCM, the
crystal structure of PCM remained the same and gave a good latent heat storage capacity
of 203 J/g. However, increased thermal conductivity improved crystallization kinetics.
Thus, the heat release ratio of MPCM was 52.2% higher than erythritol. CNTs possess high
thermal conductivity; however, in PCM-CNT blends, CNT agglomeration occurs. Such
agglomeration concentrates high thermal conductivity in certain regions only. The poor
dispersibility of CNT is due to its low compatibility and high density. Its dispersibility
can be improved by grafting it with organic moiety. Meng et al. [13] grafted CNT with
octadecyl isocyanate. The grafted CNTs were further blended with a mixture of two
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PCMs namely, octadecane and octacosane. The use of two PCMs assist in adjusting phase
transition temperature range. The blend was further encapsulated with MF shell by the
in-situ polymerization method. An addition of only 3% of grafted CNTs improved thermal
conductivity by 71.4%.

Commercially used organic shell materials have low thermal conductivity and high
pressure sensitivity. Inorganic materials have high thermal conductivity; they can be used
as shell material to encapsulate PCM. Their high strength makes them suitable for practical
applications. Zhang et al. [14] tested the suitability of CaCO3 shell for encapsulating
PCM by the self-assembly method. The optimum level of stirring speed, temperature, and
emulsifier concentration was determined to be 800 rpm, 45 ◦C, and 15 mmol/L, respectively.
The core to shell ratio varied in amounts of half, one, two, three, and four, respectively.
The optimized core:shell ratio was 3:1. Increasing the core content beyond this value
produced agglomerated particles, as shown in Figure 3. Reducing the ratio below three
produced rough shell surfaces. A very high concentration of shell catalyzed the formation
of large CaCO3 crystals, which cannot encapsulate the core. This could lead to leakage of
PCM. The FTIR, SEM, and transmission electron microscope (TEM) analysis confirmed
the presence of CaCO3 shell for optimized formulation. XRD and differential scanning
calorimetry calorimeter (DSC) analysis showed crystalline structure of MPCMs, which
can store thermal energy. The MPCMs can store a latent heat of 134.83 J/g. Leakage
test showed that the formation of CaCO3 shell form-stabilized PCM. The inorganic shell
improved the thermal stability of PCM. It increased thermal conductivity to 0.542 W/mK
from 0.152 W/mK. The mechanical strength of MPCMs was tested by stirring the MPCM
dispersion at 2000 rpm for two hours. The particle size of stirred MPCMs remained
the same. The SEM analysis observed roughness in shell structure. The heat storage
enthalpy was reduced by 4% only. These results point toward the robustness of CaCO3
shell. Paraffin/graphene MPCMs were prepared by electrostatic self-assembly process [15].
The paraffin PCM was dispersed in water with stearic acid emulsifier by high speed
homogenization. This dispersion was negatively charged. The graphene nanoparticles
were dispersed with cetyltrimethylammonium bromide by ultrasonication. Under stirring,
this positively charged dispersion was added dropwise to negatively charged paraffin
dispersion. The electrostatic rearrangement in the mixture form graphene shell around
the paraffin core. The wrinkled surface of MPCMs and smooth surface of paraffin in SEM
images point towards core/shell structure formation. The characteristic peaks of paraffin
appearing in MPCM structure confirmed microencapsulation.
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The inorganic shelled MPCM have good mechanical strength and high thermal con-
ductivity. These MPCMs are often dispersed in organic polymeric matrices. Incompatibility
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between the inorganic shell and organic matrix can give anisotropic composite properties.
To avoid this, a combination of inorganic and organic components can be used to encapsu-
late PCM. Zhao et al. [16] prepared a Pickering emulsion of paraffin wax with modified
graphene particles. The Pickering emulsion was further encapsulated by the MF shell by
in-situ polymerization. The synthesized MPCMs possess a light to thermal energy con-
version property and high thermal conductivity of 0.707 W/mK. The combination of two
nanoparticles can be used for preparing the Pickering emulsion. It can add properties of
both nanoparticles as well as reduce the cost. Sun and Xiao [17] used polymethylmethacry-
late (PMMA) organic shell and BN/TiO2 inorganic shell to encapsulate PCM. An aqueous
phase of ultrasonicated nanoparticles dispersion and oil phase of PCM, PMMA precursor,
and crosslinking agent were mixed. A stable Pickering emulsion was formed after me-
chanical homogenization. The prepared MPCMs possess a TES enthalpy of 124.4 J/g and
thermal conductivity of 0.4215 W/mK. The hybrid shell possessed advantages of organic
and inorganic components. The structural, morphological, and thermal characterization
of MPCMs confirmed the effectiveness of the shell structure. Hussain and Kalaiselvam
et al. [18] prepared a hybrid Ag2O-urea formaldehyde shell for microencapsulating oleic
acid PCM. The in situ polymerization was performed with cationic, anionic, and nonionic
surfactants. The cationic surfactant showed a better PCM encapsulation ratio over other
surfactants. The Ag2O–urea formaldehyde shell formation over the surfactant stabilized
core PCM particles further enhance the mechanical and thermal properties and the sur-
face morphology. The presence of Ag2O particles can be confirmed from FTIR, XRD, and
UV-visible absorption analysis.

2.3. Impregnation

The nanopores formed in the nanomaterial network can accumulate PCM by the
impregnation method. The physical bonds formed between PCM and nanomaterial inhibit
leakage of PCM. The impregnated PCM nanocomposites can be further coated with adhe-
sive to avoid leakage. Ren et al. [19] vacuum impregnated paraffin wax into dried EG. The
leakage-proof test of prepared nanocomposite proved 94% as the highest paraffin content
for impregnating into porous EG. This nanocomposite requires structural support and
protection from paraffin volatilization. Both aims were achieved by coating the optimized
formulation of the nanocomposite tablet with epoxy adhesive. The optimized concentration
ensured the prevention of epoxy adhesive in the pores of EG. Such passage of epoxy can
increase thermal resistance of the nanocomposite. This would be detrimental to heat stor-
age performance. Thus, the optimized concentration of PCM nanocomposite was coated
with adhesive. The prepared nanocomposite can store 143.8 J/g of latent heat. Its thermal
conductivity was improved to 2.141 W/mK. Zhang et al. [20] created macrocapsules of salt
hydrate with the impregnation technique, as shown in Figure 4. Urea was transformed
to a porous g-C3N4 structure by heating it to 550 ◦C at a rate of 5 ◦C per minute and
then holding it at that temperature for 2 h. The resulting chemical, g-C3N4, was cooled to
room temperature and ground. It had a pore diameter of 18.5 nm and a surface area of
50.35 m2/g. Salt Mg(NO3)2·6H2O was impregnated into porous g-C3N4 in a sealed flask in
an oven at 95 ◦C for 3 h. After cooling, a cylinder with a diameter of 40 mm and a thickness
of 10 mm was formed. It was wrapped in aluminum foil and sealed with epoxy resin.
With the aid of its high surface area pores, the porous structure of g-C3N4 can integrate up
to 80% PCM, provide moisture protection, and reduce subcooling from 29.2 ◦C to 1.9 ◦C.
The second stage of coating with sealant preserves good TES characteristics, decreases
weight loss, and prevents moisture from entering the macrocapsules after thermal cycling.
This technique is inexpensive and allows the use of low-cost salt hydrate PCM with lower
supercooling. Chin et al. [21] prepared porous oil palm kernel shell activated carbon from
waste bioproduct. The porous structure was impregnated with paraffin wax. The structural
stability and thermal conductivity of the impregnated composite were improved by a
double coating of epoxy-nano alumina coat. The addition of 60% alumina nanoparticles
in the epoxy resin improved the thermal conductivity of the epoxy by 271%. The thermal
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resistance associated with heat transfer through epoxy resin was minimized with alumina
nanoparticles.
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The microporous foams can be synthesized in any dimension with good structural
stability. This is not possible with other nanoporous materials, which require additional
coating for structural stability. However, as compared to nanoporous materials, the microp-
orous foam can hold a lesser amount of PCM without leakage. The leakage performance
of microporous foams can be improved by adding nanoparticles. The high surface area
and reactivity of nanoparticles tether the leakage of molten PCM. The synergistic effect of
the combination of microporous material and nanoparticles improve shape stability. It can
also add new material-specific properties to the composite. This concept has grabbed the
attention of some research groups. Wang et al. [22] prepared flexible carbon foam (CF) per-
colated with Ti2O3 nanoparticles with the help of polydopamine (PDA). The good adhesion
property of PDA is helpful for the conglutination of the Ti2O3/PDA network in CF. The
Ti2O3/PDA network precoated with CF foam is a microporous substrate suitable for PCM
impregnation. The lipophilic nature of PDA and capillary forces associated with Ti2O3
nanoparticles improved the leakage characteristics of CF foam. The maximum amount of
PCM that can be incorporated in the prepared substrates is 84%. The prepared composite
was bending-resilient, compression-resilient, and has photothermal conversion capability.
These properties are induced because of the synergistic effect of composite components.
Yang et al. [23] prepared a hybrid structure for impregnating PCM. The large pore size of
graphene foam (GF) can incorporate a lesser amount of PCM without leakage. The covalent
bonds present in GF improve phonon transport. On the other hand, graphene aerogel (GA)
has a small pore size. It can incorporate a large amount of PCM without leakage. However,
the physical crosslinks present in GA reduce the phonon transport rate and increase thermal
resistance. Improved thermal properties and reduced leakage of PCM can be achieved
by hybridizing GF and GA structures. Such a structure was obtained by self-assembly
and the chemical vapour deposition technique. The formed hybrid microstructure was
impregnated with paraffin wax, which improved thermal conductivity by 574%.

3. Applications
3.1. Building

Ren et al. [24] created a new electric TES concrete. The concrete was made with two
porous supporting materials: ceramsite and pumice. The porous materials were dried and
mixed with mixture of fatty acid PCMs and 7% graphene powder under magnetic stirring
of 400 revolutions per minute (RPM) at 80 ◦C. For 60 min, the produced solution was
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vacuum impregnated in two porous matrices. After cooling, the aggregates were covered
with epoxy resin as the first layer by soaking for 10 min. As a second layer, dry cement
powder was applied onto epoxy resin. After that, the aggregates were immersed in water
for three days. CNF is a superplasticizer dispersion in water produced with Hobart mixer
by combining components for 5 min at 198 RPM. In a concrete mixer, this dispersion was
mixed for two minutes with quartz sand and cement. Finally, macroencapsulated aggregate
PCMs were added to the mixture and stirred for 1 min to prevent PCM leakage. The
structure produced is given in Figure 5. The compressive strength of the concrete produced
using this method is about 5 MPa. This material can be utilized to insulate buildings. The
composites of ceramsite and pumice showed a reduction in temperature by 4.7 ◦C and
8.7 ◦C, respectively. This indicates that the pumice composite is more effective. Composites
with enhanced electric conductivity can be utilized for electromagnetic shielding, health
monitoring, and de-icing applications. The material’s dual characteristic of TES and high
electrical conductivity make it attractive for future usage. Nanosilica impregnated with
PCM pentadecane: to create core-shell structured macrocapsules, impregnated nanosilica
was covered with an ethyl cellulose shell. These macrocapsules were then mixed with
epoxy and a curing agent in a 1:1:0.024 ratio and cured. At 1.6 ◦C, the produced composite
had a latent heat storage capacity of 43.1 J/g. Cui et al. [25] prepared PCM macrocapsules
of two types. In the first type, PCM lauryl alcohol was vacuum impregnated in lightweight
aggregates (LWA) and coated with two subsequent layers of epoxy resin. In the second
type, after the same procedure of vacuum impregnation, the microcapsule was coated with
cement paste consisting of 30 wt% epoxy. The encapsulation ratio of 49.1% was achieved in
vacuum impregnation. Both types of macrocapsules incorporated in the concrete showed
a good compressive strength of around 30 MPa. They showed minimal weight loss and
enthalpy reduction after 150 thermal cycles. The author had calculated payback time of the
material as 14 years, which is nearly one fourth of the total lifetime of buildings.
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Mohseni et al. [26] created a latent heat storage aggregate (LHSA) that can be utilized in
concrete formulations. LWA were impregnated with PCM using the vacuum impregnation
procedure. These PCM macrocapsules were then chilled at 4 ◦C for 10 min before being
covered with epoxy resin. On top of the epoxy coating, a second layer of silica fume was
placed. The epoxy resin was allowed to set for seven days to prepare LHSA. To produce
concrete, 50% LHSA was combined with LWA. Due to the high compatibility of fumed silica
with other concrete components, concrete containing LHSA demonstrated a compressive
strength of more than 30 MPa. It has a high TES and structural strength for 500 heat cycles,
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making it ideal for long-term performance in construction applications. Wang et al. [27]
reported that epoxy–PCM composite modified concrete can retain temperatures within
human comfort for double the time as compared to ordinary concrete. For preparing the
composite with a phase change temperature range of 22–25 ◦C, liquid and solid paraffin
were mixed in different proportions at 120 ◦C. The DSC analysis and time–temperature
curve analysis of the mixed PCM 40:60 composition of liquid paraffin to solid paraffin
was found suitable. This PCM composition was vacuum impregnated into ceramsite clay
for 2 h at 60 ◦C. These impregnation parameters showed an impregnation ratio of 95.5%.
The amount of PCM impregnated without vacuum was lower by 11.6%; thus, vacuum
impregnation was chosen for further characterization. The ceramsite–PCM composite was
sealed with cured epoxy polymer. Thermal cycling of the ceramsite–PCM composite sealed
with epoxy in the temperature range of 10 to 40 ◦C reduced the leakage by 50%. The epoxy–
PCM composite mixed with cement composite took 480 min to change temperature from
24 ◦C to 18 ◦C; regular cement composition took 240 min for the same temperature drop.

3.2. Solar Devices

Poyyamozhi and Karthikeyan [28] studied heat transfer performance of solar pond
with PCM nanocomposites. The structure of the solar pond consisted of rectangular printed
mild steel structure at the bottom with two holes for water passage. The upper part was
covered with four triangular glass sheets forming a pyramid as shown in Figure 6. The
heat transfer performance of the solar pond was observed for 30 min by incorporating
PCM, PCM-AgTiO2, and PCM-CNT nanocomposites. The order of heat transfer in the solar
pond was increasing in order as PCM < PCM-AgTiO2 < PCM-CNT. The corresponding
maximum heat transfer temperatures were 49 ◦C, 53 ◦C, and 61 ◦C, respectively. The
high thermal conductivity of CNT was the reason for better heat transfer performance
of PCM-CNT nanocomposite. Tangsiriratana et al. [29] used MPCM coating to improve
the performance of solar photovoltaic (PV) panels. The solar PV panels operate at high
temperatures of around 60 ◦C. Their efficiency in the conversion of heat to electricity
reduces with an increase in temperature. Thus, temperature reduction is important for
improving the energy efficiency of PV panels; this can be done with PCM. The research
group used abundantly available natural sugarcane wax as PCM, which has a melting
temperature in the range of 77.6–80 ◦C. The thermal conductivity of wax improved by
blending with Al2O3 nanoparticles. The blended wax was further microencapsulated in
the gum-arabic shell by complex coacervation. The prepared MPCMs were coated on the
backside of the PV panel with thicknesses 4 mm and 7 mm. The PV panel coated with
higher thickness was found suitable for improving the energy generation efficiency of PV
panel in an experimental study. It reduced the front panel part’s temperature by 4%. This
temperature reduction improved power consumption by 12%. The increasing efforts of
increasing the efficiency of solar power generation are essential for meeting future energy
demands. This innovation has the potential to increase solar power generation to a larger
extent. Yeh et al. [30] prepared a compact solar water heater. The energy efficiency of
the device was improved by incorporating shape stabilized PCM-EG formulation and
optimizing the geometry of the device. The optimization studies succeeded in improving
the heat discharging period by 2.6 times. Effective utilization of solar energy for heating
water was achieved with thermally conductive PCM formulation. The high temperature
cooking methods require solar parabolic dish concentrator instruments at outdoor facilities.
This instrument could also lead to health injuries in the form of sunburns and eye damage.
Bhave and Kale [31] prepared a cooking vessel incorporated with solar salt PCM. This
vessel can be charged with heat on a clear sunny day. The heat-charged vessel was kept in
a heat-insulated chamber until the time of actual cooking. The heat charging method with
PCM allows the user to choose the time and place of cooking the food. Unlike other solar
instruments, the food can be cooked in a closed facility as well as at night time. This method
gives a uniform cooking temperature. This instrument can fry 0.25 kg of potato chips in
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17 min. It can cook rice in 20 min. Sunburn can be avoided while using non-conventional,
green energy from the sun.
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3.3. Electronic

The present trend of compacting the structure of electronic components and improving
heat dissipation rate can be fulfilled with PCM incorporation. Often PCM is incorporated
as a separate entity in addition to the main structural component of electronic assem-
bly. Fredi et al. [32] prepared a multifunctional composite. This composite was made by
blending paraffin wax with CNTs. The blend was further encapsulated into the 3D epoxy
structure by the moulding process. The inorganic CNT fillers improved the mechanical,
thermal, and electrical properties of the composite. The low electrical resistivity value of
1.2 × 103 Ω·cm of the prepared composite makes it a potential candidate for electrically
conductive multifunctional composites. Atinafu et al. [33] prepared a paraffin nanocompos-
ite for manufacturing electro-thermal devices. The nanocomposite possessed synergistic
properties of exfoliated graphene nanoplatelets and CNTs. The π–π interaction within
graphene nanoplatelets and agglomeration of CNTs adversely affect the morphology and
functional properties of nanocomposites prepared by blending only one kind of nanoparti-
cles. The introduction of two kinds of nanoparticles in PCM help in forming homogeneous
3D structure. This structure supported heat and electron transfer at a faster rate. It reduced
the electrical resistivity of PCM by six times. The reduced supercooling, improved PCM
loading percentage, and increased latent heat storing capacity of the hybrid nanocomposite
proved useful for transferring heat from electronic components. Kalaiselvan et al. [34]
prepared a nanoencapsulated PCM suitable for cooling electronic chips as well as electrode
material. The encapsulation process involved nanoencapsulation of oleic acid-PEG eutectic
mixture with a primary shell of SiO2 and secondary shell of SnO2 material. The secondary
shell helped in reducing PCM leakage and ensured functional properties to nanoencapsu-
lated PCM. SnO2 is an n-type semiconductor known for its high electron transport rate.
Owing to this property, the prepared nanocapsules possessed a high electrical conductivity
of 1.08 × 10−7 S/cm. They can also be used for storing electrochemical energy.
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3.4. Textiles

PCM incorporated in clothing controls heat release in response to temperature change.
It helps the body’s thermoregulation mechanism by maintaining constant temperature.
PCM-incorporated textiles often use PCM in smaller quantity for optimizing other essen-
tial properties such as breathability, bending rigidity, etc. The efficacy of heat transfer
in the available PCM amount can be improved by incorporating thermally conductive
nanoparticles. However, the health hazard associated while handling additive nanoparti-
cles imposes the use of modified manufacturing facilities and a skilled labour force. These
conditions limit the use of nanoparticles on a larger scale. Many research groups have
strived to develop ways of synthesizing in situ nanoparticles while processing PCMs. The
in situ nanoparticle preparation process helps in minimizing handling problems. Rezaie
and Montazer [35] prepared thermoregulating textile coatings by the direct-use method.
The coating composition was prepared with an eutectic PCM mixture of fatty acids. The
eutectic mixture gives the opportunity to alter thermal characteristics such as phase change
temperature range and phase change enthalpy. The thermal conductivity of coating com-
position was improved by in situ preparation of copper nanoparticles. The coating was
applied on a polyester (PET) fabric sheet. The chemical structure of the coating is shown
in Figure 7. The nanoparticles diffused in the PCM eutectic mixture improved the ther-
mal conductivity by 100.1%. The leakage characteristics and chemical resistance of PCM
composite were improved with a protective outer layer of vinyl-acrylate resin. The coated
samples underwent a phase transition process in the temperature range of 29–37 ◦C, which
is suitable for body temperature regulating textiles. The incorporation of copper nanopar-
ticles improved the tensile strength of the fabric, but it also increased its rigidity. Thus,
optimizing both parameters while achieving maximum heat storage is crucial for textile
clothing applications.
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A PCM/polymer core/sheath structure can be obtained by coaxial electrospinning
with a core component of PCM and a shell component of polymer [36]. This morphology
hinders leakage of PCM. However, the limitations of optimizing flow rates of core and
shell spinning solutions and requirement of structural modification for the electrospinning
device make the coaxial spinning process cumbersome. On the other hand, the single phase
electrospinning method is simple. However, it requires a spinning solution composed of
compatible materials. The presence of nanoparticles ensured better interaction of nanopar-
ticles with other components of the spinning solution. Thus, single phase electrospinning is
found to be successful for spinning nanofibers containing nanoparticles. Salimian et al. [37]
identified a simple and green technique for synthesizing PCM nanofibers. The components
of nanofibers were PEG PCM, PVA polymeric support, silver, and TiO2 nanoparticles. TiO2
nanoparticles bonded with the functional groups of PVA and PEG, as shown in Figure 8.
In heat and sunlight, such structures crosslinks to form (TiO2)m(OH)n. The silver ions
were formed from an AgNO3 solution. The silver ions react with the hydroxyl groups of
activated TiO2, PVA, and PEG. This interaction resulted in silver nanoparticles generation,
which are stabilized into the matrix. The nanofibers were spun from a solution containing
these constituents by a single phase electrospinning machine. The compatibility between
the constituents resulted in form-stabilized, uniform fibre morphology. Thus, commonly
used organic solvents and complex coaxial electrospinning mechanisms can be avoided
for obtaining electrospun fibres. The electrospun fibres can be used in textile applica-
tions. The nanomaterial incorporated in fibers gives their special characteristics to the
final product. For example, TiO2 incorporated PCM-nanofibers possess UV shielding and
thermoregulation [38]. Both these properties are desirable for smart textile manufacturing.
These nanofibers ensure good TES property for over 500 heat-cool cycles. This ensures the
longevity of the heat storage function.
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3.5. State-of-the-Art Applications

Luo et al. [39] produced a thermally conductive epoxy-PCM nanocomposite with shape
memory characteristics. The nanocomposite was made by changing the PEG content as well
as the thermally conductive additive boron nitride (BN) content in the physical blending
process with epoxy resin. Shape memory function is caused by the covalent-non-covalent
interpenetrating polymer network (IPN). The shape memory and TES characteristics were
conferred to the composite at about 80 ◦C due to the unique structural architecture. In
epoxy–BN composite, BN caused amorphous PEG to crystallize. This phenomenon was
confirmed by the SEM picture. As a result, the enthalpy of nanocomposite was raised
over its theoretical value. Crystalline PEG serves as a transient phase while IPN serves as
the permanent phase following heat treatment. The prepared composites have high TES
capacity and shape memory characteristics and may be employed in various applications.
Infrared detection technology is used in the military field to detect foreign objects. The
energy difference between foreign objects and the background depends on minimizing
temperature difference. The IR image is captured with this energy difference. Infrared
stealth performance depends on minimizing this energy difference. A PCM coating on
foreign objects could help in minimizing temperature difference. Many researchers have
used the principle of lowering surface emissivity for improving infrared stealth perfor-
mance by incorporating conductive metals and polymers. Gu et al. [40] used the synergistic
effect of PCM and conductive polymer polyaniline (PANI) to prepare infrared stealth
polyester fabric. They prepared double shelled MPCM with a primary shell of melamine-
urea-formaldehyde and secondary shell of PANI. The MPCMs were further coated on
polyester fabric with waterborne polyurethane coating. The coating thickness of 1.354 mm
showed an infrared stealth performance with 0.794 emissivity and temperature reduction
of 11.2 ◦C for 27 min. Li et al. [41] prepared UV-shielding MPCMs with TiO2 doped silk
fibroin shell. The nanoparticles absorb inorganic UV rays. The core and shell MPCM give
TES and UV absorption, respectively. Lou et al. [42] prepared MPCM to shield gamma
radiation actuated from nuclear devices. They prepared lead tungstate embedded MPCM
shells by self-assembly method. The high thermal conductivity of PbWO4 improved the
heat storage performance of MPCMs.

4. Conclusions

PCMs are well known for their TES property. The TES benefits applications ranging
from building materials, textiles, electronic systems, solar energy storage devices, etc. How-
ever, low thermal conductivity of PCMs is disadvantageous for heat transfer. Researchers
found that thermally conductive nanoparticles could improve PCM performance. The
continuous development in this direction helped researchers to incorporate multifunc-
tional nanoparticles in PCMs. Such nanoparticles not only help in TES but also impart
application-oriented properties to PCMs. Researchers explored synthesis routes of PCM
nanocomposites by blending, microencapsulation, and impregnation methods. Blending is
a simple technique of preparing PCM nanocomposites for large-scale applications. High
nanoparticle loading is required to shape-stabilize PCM-nanocomposite. Adding PCM
in a polymer matrix with low nanoparticle loading can also shape-stabilize PCM. This
can lower PCM’s heat storage enthalpy. Polymers bring desirable qualities into nanocom-
posite, which are advantageous for application. However, shear forces exerted by the
polymer interfere with PCM–nanoparticle interaction during the phase transition process.
These counteracting factors should be optimized as per application requirements. The
PCM nanocomposite structure is constructed on microlevels using the microencapsulation
process. During the phase transition process, this approach shields PCM from external
contact. Its preparation cost is greater, and thus it is suitable for specialized applications
where small quantity is required. The impregnation technique is suitable for preparing
PCM nanocomposites in large-scale applications. Blending PCM impregnated particles
into other material reduces the mechanical strength of the final product; thus, it is ideal
for applications requiring a small amount of PCM. Most of the research studies affirmed
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the improvement in the thermal characteristics of PCM with the addition of nanoparticles,
although the outcomes of some studies were inconsistent. The reason for these conflicting
results was the poor dispersion of nanoparticles. Further research is required to examine
the dispersion and settling of nanoparticles in PCM to develop a consensus on the effect of
nanoparticles.
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