Gel Properties of Carboxymethyl Hyaluronic Acid/Polyacrylic Acid Hydrogels Prepared by Electron Beam Irradiation †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Carboxymethylation of HA
2.3. Determination of Molecular Weight and the Degree of Substitution
2.4. Preparation and Irradiation of Polymer Blends
2.5. Determination of Gel Properties
2.6. FT-IR and Thermogravimetric Analysis
2.7. In-Vitro Biodegradability
3. Results and Discussion
3.1. Degree of Substitution and Molecular Weight of Carboxymethyl Hyaluronic Acid
3.2. Gel Properties of CMHA-PAA and CMHA-Carbopol Blends
3.3. FT-IR and TGA Analysis
3.4. In-Vitro Biodegradation of Hydrogels in Phosphate Buffer Solution (PBS)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mignon, A.; De Belie, N.; Dubruel, P.; Van Vlierberghe, S. Superabsorbent polymers: A review on the characteristics and applications of synthetic, polysaccharide-based, semi-synthetic and ‘smart’ derivatives. Eur. Polym. J. 2019, 117, 165–178. [Google Scholar] [CrossRef]
- Rosiak, J.M.; Yoshii, F. Hydrogels and their medical applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1999, 151, 56–64. [Google Scholar] [CrossRef]
- Relleve, L.S.; Gallardo, A.K.R.; Abad, L.V. Radiation crosslinking of carboxymethyl hyaluronic acid. Radiat. Phys. Chem. 2018, 151, 211–216. [Google Scholar] [CrossRef]
- Relleve, L.S.; Gallardo, A.K.R.; Tecson, M.G.; Luna, J.A.A. Biocompatible hydrogels of carboxymethyl hyaluronic acid prepared by radiation-induced crosslinking. Radiat. Phys. Chem. 2021, 179, 109194. [Google Scholar] [CrossRef]
- Gallardo, A.K.R.; Relleve, L.S.; Barba, B.J.D.; Cabalar, P.J.E.; Luna, J.A.A.; Tranquilan-Aranilla, C.; Madrid, J.F.; Abad, L.V. Application of factorial experimental design to optimize radiation-synthesized and biodegradable super water absorbent based on cassava starch and acrylic acid. J. Appl. Polym. Sci. 2021, 139, 51451. [Google Scholar] [CrossRef]
- Shin, M.S.; Kim, S.J.; Park, S.J.; Lee, Y.H.; Kim, S.I. Synthesis and characteristics of the interpenetrating polymer network hydrogel composed of chitosan and polyallylamine. J. Appl. Polym. Sci. 2002, 86, 498–503. [Google Scholar] [CrossRef]
- Nho, Y.C.; Park, J.S.; Lim, Y.M. Preparation of poly(acrylic acid) hydrogel by radiation crosslinking and its application for mucoadhesives. Polymers 2014, 6, 890–898. [Google Scholar] [CrossRef] [Green Version]
- Biswas, G.R.; Majee, S.B.; Roy, A. Combination of synthetic and natural polymers in hydrogel: An impact on drug permeation. J. Appl. Pharm. Sci. 2016, 6, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Edsman, K.; Nord, L.I.; Öhrlund, Å.; Lärkner, H.; Kenne, A.H. Gel properties of hyaluronic acid dermal fillers. Dermatol. Surg. 2012, 38, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, B.; Kaczmarska, K.; Bobrowski, A.; Kurleto-Kozioł, Z.; Szymański, L. Crosslink the Novel Group of Polymeric Binders BioCo by the UV-radiation. Arch. Foundry Eng. 2016, 16, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Dil, N.N.; Sadeghi, M. Free radical synthesis of nanosilver/gelatin-poly (acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu(II) metal ions. J. Hazard. Mater. 2018, 351, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.D.; Hsieh, Y.L.; Krochta, J.M.; Kurth, M.J. Study on molecular interaction behavior, and thermal and mechanical properties of polyacrylic acid and lactose blends. J. Appl. Polym. Sci. 2001, 82, 1921–1927. [Google Scholar] [CrossRef]
- Relleve, L.S.; Aranilla, C.T.; Barba, B.J.D.; Gallardo, A.K.R.; Cruz, V.R.C.; Ledesma, C.R.M.; Nagasawa, N.; Abad, L.V. Radiation-synthesized polysaccharides/polyacrylate super water absorbents and their biodegradabilities. Radiat. Phys. Chem. 2020, 170, 108618. [Google Scholar] [CrossRef]
- Deshmukh, M.; Singh, Y.; Gunaseelan, S.; Gao, D.; Stein, S.; Sinko, P.J. Biodegradable poly (ethylene glycol) hydrogels based on a self-elimination degradation mechanism. Biomaterials 2010, 31, 6675–6684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | CMHA Blend Concentration | Weight Ratio | Dose (kGy) |
---|---|---|---|
CMHA-PAA | 37.5% CMHA, 2.5% PAA | 15:1 | 20, 40 |
35% CMHA, 5% PAA | 7:1 | 20, 40 | |
CMHA-Carbopol | 10% CMHA, 10% Carbopol | 1:1 | 20, 60, 120 |
Carbopol | 10% Carbopol | - | 20, 60, 120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallardo, A.K.R.; Relleve, L.S.; Silos, A.P. Gel Properties of Carboxymethyl Hyaluronic Acid/Polyacrylic Acid Hydrogels Prepared by Electron Beam Irradiation. Mater. Proc. 2021, 7, 13. https://doi.org/10.3390/IOCPS2021-11220
Gallardo AKR, Relleve LS, Silos AP. Gel Properties of Carboxymethyl Hyaluronic Acid/Polyacrylic Acid Hydrogels Prepared by Electron Beam Irradiation. Materials Proceedings. 2021; 7(1):13. https://doi.org/10.3390/IOCPS2021-11220
Chicago/Turabian StyleGallardo, Alvin Kier R., Lorna S. Relleve, and Alyan P. Silos. 2021. "Gel Properties of Carboxymethyl Hyaluronic Acid/Polyacrylic Acid Hydrogels Prepared by Electron Beam Irradiation" Materials Proceedings 7, no. 1: 13. https://doi.org/10.3390/IOCPS2021-11220
APA StyleGallardo, A. K. R., Relleve, L. S., & Silos, A. P. (2021). Gel Properties of Carboxymethyl Hyaluronic Acid/Polyacrylic Acid Hydrogels Prepared by Electron Beam Irradiation. Materials Proceedings, 7(1), 13. https://doi.org/10.3390/IOCPS2021-11220