From Mineral Processing to Recycling: The Case of End-of-Life Printed Circuit Boards’ Physical Processing †
Abstract
:1. Introduction
2. Magnetic Separation Processing
3. Electrostatic Separation Processing
3.1. Eddy Current Separation Process
3.2. Corona Electrostatic Separation Process
3.3. Triboelectrostatic Separation Process
4. Gravity Separation Processing
5. Flotation Separation Processing
6. Conclusions
Institutional Review Board Statement
Informed Consent Statement
References
- Castro, M.B.; Remmerswaal, J.A.M.; Brezet, J.C.; Van Schaik, A.; Reuter, M.A. A simulation model of the comminution–liberation of recycling streams: Relationships between product design and the liberation of materials during recycling. Int. J. Miner. Process. 2005, 75, 255–281. [Google Scholar] [CrossRef]
- Zhu, X.N.; Nie, C.C.; Wang, S.S.; Xie, Y.; Zhang, H.; Lyu, X.J.; Qiu, J.; Li, L. Cleaner approach to the recycling of metals in waste printed circuit boards by magnetic and gravity separation. J. Clean. Prod. 2020, 248, 119235. [Google Scholar] [CrossRef]
- Rao, S.R. Resource Recovery and Recycling from Metallurgical Wastes; Elsevier: Amsterdam, The Netherlands, 2011; pp. 56–61. [Google Scholar]
- Sohaili, J.; Muniyandi, S.K.; Mohamad, S.S. A review on printed circuit board recycling technology. J. Emerg. Trends Eng. Appl. Sci. 2012, 3, 12–18. [Google Scholar]
- Hanafi, J.; Jobiliong, E.; Christiani, A.; Soenarta, D.C.; Kurniawan, J.; Irawan, J. Material recovery and characterization of PCB from electronic waste. Procedia-Soc. Behav. Sci. 2012, 57, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Yazici, E.Y.; Devici, H.; Yazici, R. Base and precious metal losses in magnetic separation of waste printed circuit boards. Proc. EMC 2015, 2, 649–662. [Google Scholar]
- Haldar, S.K. Mineral Exploration: Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 275–276. [Google Scholar]
- Gupta, A.; Yan, D.S. Mineral Processing Design and Operations: An Introduction; Elsevier: Amsterdam, The Netherlands, 2016; p. 666. [Google Scholar]
- Wei, J.; Realff, M.J. Design and optimization of free-fall electrostatic separators for plastics recycling. AIChE J. 2003, 49, 3138–3149. [Google Scholar] [CrossRef]
- Zhang, S.; Forssberg, E. Intelligent liberation and classification of electronic scrap. Powder Technol. 1999, 105, 295–301. [Google Scholar] [CrossRef]
- Burat, F.; Özer, M. Physical separation route for printed circuit boards. Physicochem. Probl. Miner. Process. 2018, 54. [Google Scholar] [CrossRef]
- He, J.F.; Duan, C.L.; He, Y.Q.; Zhang, H.J. Recovery of valuable metal concentrate from waste printed circuit boards by a physical beneficiation technology. Int. J. Environ. Sci. Technol. 2015, 12, 2603–2612. [Google Scholar] [CrossRef] [Green Version]
- Vermeșan, H.; Tiuc, A.E.; Purcar, M. Advanced Recovery Techniques for Waste Materials from IT and Telecommunication Equipment Printed Circuit Boards. Sustainability 2020, 12, 74. [Google Scholar] [CrossRef] [Green Version]
- Hazra, A.; Das, S.; Ganguly, A.; Das, P.; Chatterjee, P.K.; Murmu, N.C.; Banerjee, P. Plasma Arc Technology: A Potential Solution Toward Waste to Energy Conversion and of GHGs Mitigation. In Waste Valorisation and Recycling; Springer: Singapore, 2019; pp. 203–217. [Google Scholar]
- Yazici, E.Y.; Deveci, H.; Yazici, R.; Greenway, R.; Akcil, A. Recovery of copper from scrap TV boards by eddy current separation. In Proceedings of the 15th Conference on Environment and Mineral Processing (EaMP); Part, I.; VSB Tech. University of Ostrava: Ostrava, Czech Republic, 2011; pp. 27–33. [Google Scholar]
- Settimo, F.; Bevilacqua, P.; Rem, P. Eddy current separation of fine non-ferrous particles from bulk streams. Phys. Sep. Sci. Eng. 2004, 13, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Schlett, Z.; Claici, F.; Mihalca, I.; Lungu, M. A new static separator for metallic particles from metal–plastic mixtures, using eddy currents. Miner. Eng. 2002, 15, 111–113. [Google Scholar] [CrossRef]
- Ghosh, B.; Ghosh, M.K.; Parhi, P.; Mukherjee, P.S.; Mishra, B.K. Waste printed circuit boards recycling: An extensive assessment of current status. J. Clean. Prod. 2015, 94, 5–19. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, Z. Precious metals recovery from waste printed circuit boards: A review for current status and perspective. Resour. Conserv. Recycl. 2016, 113, 28–39. [Google Scholar] [CrossRef]
- Hadi, P.; Gao, P.; Barford, J.P.; McKay, G. Novel application of the nonmetallic fraction of the recycled printed circuit boards as a toxic heavy metal adsorbent. J. Hazard. Mater. 2013, 252, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Guo, J.; Xu, Z. Recycling of waste printed circuit boards: A review of current technologies and treatment status in China. J. Hazard. Mater. 2009, 164, 399–408. [Google Scholar] [CrossRef]
- He, Y.; Xu, Z. Recycling gold and copper from waste printed circuit boards using chlorination process. Rsc Adv. 2015, 5, 8957–8964. [Google Scholar] [CrossRef]
- Li, L.; Liu, G.; Pan, D.; Wang, W.; Wu, Y.; Zuo, T. Overview of the recycling technology for copper-containing cables. Resour. Conserv. Recycl. 2017, 126, 132–140. [Google Scholar] [CrossRef]
- Iuga, A.; Samuila, A.; Morar, R.; Bilici, M.; Dascalescu, L. Tribocharging Techniques for the Electrostatic Separation of Granular Plastics from Waste Electric and Electronic Equipment. J. Part. Sci. Technol. 2015, 34, 45–54. [Google Scholar] [CrossRef]
- Li, J.; Wu, G.; Xu, Z. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation. Waste Manag. 2015, 35, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Miloudi, M.; Dascalescu, L.; Li, J.; Medles, K.; Tilmatine, A. Improved overall performances of a tribo-aero-electrostatic separator for granular plastics from waste electric and electronic equipment. IEEE Trans. Ind. Appl. 2015, 51, 4159–4165. [Google Scholar] [CrossRef]
- Iuga, A.; Samuila, A.; Neamtu, V.; Morar, R.; Beleca, R.; Das, S.; Dascalescu, L. Removal of metallic particles from acrylonitrile butadiene styrene wastes using electrostatic separation methods. IEEE Trans. Ind. Appl. 2010, 47, 322–330. [Google Scholar] [CrossRef]
- Wu, G.; Li, J.; Xu, Z. Triboelectrostatic separation for granular plastic waste recycling: A review. Waste Manag. 2013, 33, 585–597. [Google Scholar] [CrossRef]
- He, J.F.; He, Y.Q.; Ge, W.S.; Duan, C.L.; Wu, X.B. Research on the Recycling of Valuable Metals from Waste Printed Circuit Boards by Eddy Current Separation. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2010; Volume 113, pp. 367–371. [Google Scholar]
- Eswaraiah, C.; Kavitha, T.; Vidyasagar, S.; Narayanan, S.S. Classification of metals and plastics from printed circuit boards (PCB) using air classifier. Chem. Eng. Process. Process. Intensif. 2008, 47, 565–576. [Google Scholar] [CrossRef]
- Shapiro, M.; Galperin, V. Air classification of solid particles: A review. Chem. Eng. Process. Process. Intensif. 2005, 44, 279–285. [Google Scholar] [CrossRef]
- Zheng, Y.; Shen, Z.; Cai, C.; Ma, S.; Xing, Y. The reuse of nonmetals recycled from waste printed circuit boards as reinforcing fillers in the polypropylene composites. J. Hazard. Mater. 2009, 163, 600–606. [Google Scholar] [CrossRef]
- Kaya, M. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manag. 2016, 57, 64–90. [Google Scholar] [CrossRef]
- Veit, H.M.; Juchneski, N.C.D.F.; Scherer, J. Use of gravity separation in metals concentration from printed circuit board scraps. Rem Rev. Esc. De Minas 2014, 67, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Forssberg, E. Mechanical recycling of waste electric and electronic equipment: A review. J. Hazard. Mater. 2003, 99, 243–263. [Google Scholar] [CrossRef]
- Tsakalakis, K.G.; Benardos, A.; Sammas, I. Metals Recovery from Pulverized Printed Circuit Boards (PCBs) by Flotation. In Proceedings of the 3rd Symposium on Urban Mining and Circular Economy-SUM Bergamo, Bergamo, Italy, 21–23 May 2016. [Google Scholar]
- Cui, H.; Anderson, C.G. Literature review of hydrometallurgical recycling of printed circuit boards (PCBs). J. Adv. Chem. Eng. 2016, 6, 1–11. [Google Scholar]
- Ogunniyi, I.O.; Vermaak, M.K.G. Froth flotation for beneficiation of printed circuit boards comminution fines: An overview. Miner. Process. Extr. Metall. Rev. 2009, 30, 101–121. [Google Scholar] [CrossRef]
- Vidyadhar, A.; Das, A. Kinetics and efficacy of froth flotation for the recovery of metal values from pulverized printed circuit boards. In Proceedings of the XXVI International Mineral Processing Congress (IMPC), New Delhi, India, 24–28 September 2012. [Google Scholar]
- He, J.; Duan, C. Recovery of metallic concentrations from waste printed circuit boards via reverse floatation. Waste Manag. 2017, 60, 618–628. [Google Scholar] [CrossRef] [PubMed]
Metal/Material | Conductivity (σ)/Density Ratio (ρ) | Metal/Material | Conductivity (σ)/ Density Ratio (ρ) |
---|---|---|---|
Aluminium (Al) | 13.0 | Tin (Sn) | 1.2 |
Copper (Cu) | 6.7 | Iron (Fe) | 1.2 |
Silver (Ag) | 6.0 | Lead (Pb) | 0.45 |
Zinc (Zn) | 2.4 | Glass | 0.00 |
Gold (Au) | 2.1 | Plastics | 0.00 |
Materials | Specific Gravity g/cm3 | Materials | Specific Gravity g/cm3 |
---|---|---|---|
Copper | 8.96 | Gold | 19.3 |
Iron | 7.87 | Bismuth | 9.79 |
Glass fibber | 2.7 | Chromium | 7.15 |
SiO2 filler | 2.65 | Lead | 11.3 |
Plastics | 2.0 | Nickel | 8.90 |
Ferrite | 5.0 | Silver | 10.5 |
Phenolic | 1.23–1.24 | Tin | 7.26 |
Aluminium | 2.7 | Zinc | 7.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syrmakezis, K.; Tsakalakis, K.; Sammas, I. From Mineral Processing to Recycling: The Case of End-of-Life Printed Circuit Boards’ Physical Processing. Mater. Proc. 2021, 5, 61. https://doi.org/10.3390/materproc2021005061
Syrmakezis K, Tsakalakis K, Sammas I. From Mineral Processing to Recycling: The Case of End-of-Life Printed Circuit Boards’ Physical Processing. Materials Proceedings. 2021; 5(1):61. https://doi.org/10.3390/materproc2021005061
Chicago/Turabian StyleSyrmakezis, Kyriakos, Konstantinos Tsakalakis, and Ilias Sammas. 2021. "From Mineral Processing to Recycling: The Case of End-of-Life Printed Circuit Boards’ Physical Processing" Materials Proceedings 5, no. 1: 61. https://doi.org/10.3390/materproc2021005061
APA StyleSyrmakezis, K., Tsakalakis, K., & Sammas, I. (2021). From Mineral Processing to Recycling: The Case of End-of-Life Printed Circuit Boards’ Physical Processing. Materials Proceedings, 5(1), 61. https://doi.org/10.3390/materproc2021005061