Formulation of Bogue Equations from Thermodynamic Modelling for Low-Carbon Dioxide Ferrite-Belite Clinkers †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Method and Thermodynamic Calculation
2.2. Bogue Formulation
3. Results and Discussion
Prediction of Crystalline Phases and the Phase Assemblage Based on the Raw Meal Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H. Advances in alternative cementitious binders. Cem. Concr. Res. 2011, 41, 1232–1243. [Google Scholar] [CrossRef]
- Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2018, 10, 195–217. [Google Scholar] [CrossRef] [Green Version]
- Iacobescu, R.I.; Koumpouri, D.; Pontikes, Y.; Angelopoulos, N. Hydraulic and leaching behaviour of belite cements produced with electric arc furnace steel slag as raw material. Ceram. -Silik. 2013, 57, 126–132. [Google Scholar]
- Lawrence, C.D. 9—The Production of Low-Energy Cements. In Lea’s Chemistry of Cement and Concrete, 4th ed.; Hewlett, P.C., Ed.; Butterworth-Heinemann: Oxford, UK, 1998; pp. 421–470. [Google Scholar]
- Nayak, B. Process for Manufacturing of High Iron Hydraulic Cement Clinker; U.S.P.a.T. Office, Ed.; Council of Scientific and Industrial Research: New Delhi, India, 2004. [Google Scholar]
- Wang, H.; De Leon, D.; Farzam, H. C^sub 4^AF Reactivity-Chemistry and Hydration of Industrial Cement. ACI Mater. J. 2014, 111, 201–210. [Google Scholar]
- Sharp, J.H.; Lawrence, C.D.; Yang, R. Calcium sulfoaluminate cements—low-energy cements, special cements or what? Adv. Cem. Res. 1999, 11, 3–13. [Google Scholar] [CrossRef]
- Hertel, T.; Bulck, A.V.D.; Onisei, S.; Sivakumar, P.P.; Pontikes, Y. Boosting the use of bauxite residue (red mud) in cement—Production of an Fe-rich calciumsulfoaluminate-ferrite clinker and characterisation of the hydration. Cem. Concr. Res. 2021, 145, 106463. [Google Scholar] [CrossRef]
- Arino Montoya, D.; Katsiotis, M.; Giannakopoulos, G.; Iacobescu, R.I.; Pontikes, Y. Low-Carbon Footprint Cements Incorporating High Volumes of Bauxite Residue. In Proceedings of the 35th International ICSOBA Conference, Hamburg, Germany, 2–5 October 2017. [Google Scholar]
- Hertel, T.; Pontikes, Y. Geopolymers, inorganic polymers, alkali-activated materials and hybrid binders from bauxite residue (red mud)—Putting things in perspective. J. Clean. Prod. 2020, 258, 120610. [Google Scholar] [CrossRef]
- Pontikes, Y.; Angelopoulos, G.N. Bauxite residue in cement and cementitious applications: Current status and a possible way forward. Resour. Conserv. Recycl. 2013, 73, 53–63. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Modification of the Bogue calculation. Adv. Cem. Res. 1989, 2, 73–77. [Google Scholar] [CrossRef]
- Bale, C.W. FactSage thermochemical software and databases. Calphad 2002, 26, 189–228. [Google Scholar] [CrossRef]
Limestone | Bauxite Residue | Kaolin | |
---|---|---|---|
CaO | 56.00 | 9.07 | 0.03 |
SiO2 | 0.18 | 8.20 | 45.10 |
Al2O3 | 0.03 | 17.50 | 39.20 |
Fe2O3 | 0.04 | 42.50 | 0.21 |
SO3 | 0.00 | 0.41 | 0.03 |
TiO2 | 0.00 | 5.87 | 1.66 |
MgO | 0.32 | 0.16 | 0.06 |
Na2O | 0.00 | 4.29 | 0.03 |
K2O | 0.00 | 0.12 | 0.02 |
P2O5 | 0.00 | 0.10 | 0.00 |
Cl | 0.00 | 0.10 | 0.00 |
LOI | 43.43 | 10.00 | 13.80 |
wt. Fractions | ||||
---|---|---|---|---|
Crystalline Phases | CaO | SiO2 | Al2O3 | Fe2O3 |
C2S | 0.651 | 0.348 | 0.000 | 0.000 |
C4AF | 0.461 | 0.000 | 0.209 | 0.328 |
C2AS | 0.408 | 0.219 | 0.371 | 0.000 |
C3S2 | 0.600 | 0.400 | 0.000 | 0.000 |
CF | 0.259 | 0.000 | 0.000 | 0.740 |
C3A | 0.566 | 0.036 | 0.313 | 0.051 |
Lime | 1.000 | 0.000 | 0.000 | 0.000 |
Field No. | Phase Assemblage | Intersection Point | Phase Assemblage |
---|---|---|---|
1 | Ca2Al2SiO7-CF-C4A0.27F1.70-C2S | A | Ca2Al2SiO7-CF-C4A0.47F1.40-C2S |
2 | Ca2Al2SiO7-CF-C4A0.34F1.64-C2S | B | C4A0.63F1.25-Ca3Si2O7-Ca2Al2SiO7-C2S |
3 | Ca2Al2SiO7-CF-C4A0.39F1.51-C2S | C | C4AF-C2S-Ca3Si2O7-C3A |
4 | Ca2Al2SiO7-CF-C4A0.45F1.45-C2S | D | C4A1.20F0.83-C2S-C3A-C |
5 | Ca2Al2SiO7-CF-C4A0.50F1.36-C2S | ||
6 | C4A0.58F1.32-Ca3Si2O7-Ca2Al2SiO7-C2S | ||
7 | C4A0.67F1.20-Ca3Si2O7-C2S Ca2Al2SiO7 | ||
8 | C4A0.82F1.07-C2S-Ca3Si2O7-Ca2Al2SiO7 | ||
9 | C4A1.03F0.90-C2S-Ca3Si2O7-C3A | ||
10 | C4A1.15F0.85-C2S-C3A-C | ||
11 | C4A1.25F0.75-C2S-C3A-C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, R.; Hertel, T.; Pontikes, Y. Formulation of Bogue Equations from Thermodynamic Modelling for Low-Carbon Dioxide Ferrite-Belite Clinkers. Mater. Proc. 2021, 5, 124. https://doi.org/10.3390/materproc2021005124
Roy R, Hertel T, Pontikes Y. Formulation of Bogue Equations from Thermodynamic Modelling for Low-Carbon Dioxide Ferrite-Belite Clinkers. Materials Proceedings. 2021; 5(1):124. https://doi.org/10.3390/materproc2021005124
Chicago/Turabian StyleRoy, Rahul, Tobias Hertel, and Yiannis Pontikes. 2021. "Formulation of Bogue Equations from Thermodynamic Modelling for Low-Carbon Dioxide Ferrite-Belite Clinkers" Materials Proceedings 5, no. 1: 124. https://doi.org/10.3390/materproc2021005124
APA StyleRoy, R., Hertel, T., & Pontikes, Y. (2021). Formulation of Bogue Equations from Thermodynamic Modelling for Low-Carbon Dioxide Ferrite-Belite Clinkers. Materials Proceedings, 5(1), 124. https://doi.org/10.3390/materproc2021005124