Bibliometric Trends in Green Nano Microbiology for Advanced Materials in Water Purification: A Sustainable Approach †
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, L.; Yang, H.; Xu, X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Camargo, J.A.; Alonso, A. Ecological and Toxicological Effects of Inorganic Nitrogen Pollution in Aquatic Ecosystems: A Global Assessment. Environ. Int. 2006, 32, 831–849. [Google Scholar] [CrossRef] [PubMed]
- Gul, M.Z.; Rao, B.S.; Rupula, K. Nanotechnology-Based Applications: A Valuable Tool for Wastewater Clean-Up. In Aquatic Contamination: Tolerance and Bioremediation; Bhat, R.A., Dar, G.H., Tonelli, F.M.P., Hamid, S., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2024; pp. 291–312. [Google Scholar]
- Ayyadurai, P.; Ragavendran, C. Green Nanotechnologies for Removing Cosmetic Pollutants: Approach towards Preserving and Protecting Aquatic Health. Nanotechnol. Environ. Eng. 2025, 10, 21. [Google Scholar] [CrossRef]
- Sikiru, S.; Abiodun, O.J.A.; Sanusi, Y.K.; Sikiru, Y.A.; Soleimani, H.; Yekeen, N.; Haslija, A.B.A. A Comprehensive Review on Nanotechnology Application in Wastewater Treatment a Case Study of Metal-Based Using Green Synthesis. J. Environ. Chem. Eng. 2022, 10, 108065. [Google Scholar] [CrossRef]
- Ugwu, E.I.; Karri, R.R.; Nnaji, C.C.; John, J.; Padmanaban, V.C.; Othmani, A.; Ikechukwu, E.L.; Helal, W.M.K. Application of Green Nanocomposites in Removal of Toxic Chemicals, Heavy Metals, Radioactive Materials, and Pesticides from Aquatic Water Bodies. In Sustainable Nanotechnology for Environmental Remediation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 321–346. [Google Scholar]
- Bakhtiari, S.; Salari, M.; Shahrashoub, M.; Zeidabadinejad, A.; Sharma, G.; Sillanpää, M. A Comprehensive Review on Green and Eco-Friendly Nano-Adsorbents for the Removal of Heavy Metal Ions: Synthesis, Adsorption Mechanisms, and Applications. Curr. Pollut. Rep. 2024, 10, 1–39. [Google Scholar] [CrossRef]
- Hussain, C.M.; Mishra, A.K. Nanotechnology in Environmental Science: 2 Volumes; Hussain, C.M., Mishra, A.K., Eds.; Wiley-VCH Verlag: Weinheim, Germany, 2018; ISBN 9783527342945. [Google Scholar]
- Yadav, A.; Jangid, N.K.; Sharma, R.; Khan, A.U. A Comprehensive Review on Applications of Different Domains of Nanotechnology in Wastewater Treatment. In Green Solutions for Degradation of Pollutants; Bentham Science Publishers: Singapore, 2024; pp. 249–278. ISBN 9789815238969. [Google Scholar]
- Mandal, D.; Gupta, J. Potential Application of Nanoparticles for Water Remediation: A New Approach. AIP Conf. Proc. 2023, 2804, 020124. [Google Scholar] [CrossRef]
- Das, S.K.; Khan, M.M.R.; Guha, A.K.; Das, A.R.; Mandal, A.B. Silver-Nano Biohybride Material: Synthesis, Characterization and Application in Water Purification. Bioresour. Technol. 2012, 124, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.U.; Shalla, A.H.; Shahadat, M. Green Purification: Green Chemistry for Sustainable Water Purification; Wiley: Hoboken, NJ, USA, 2025; ISBN 9781119852292. [Google Scholar]
- Ajith, M.P.; Aswathi, M.; Priyadarshini, E.; Rajamani, P. Recent Innovations of Nanotechnology in Water Treatment: A Comprehensive Review. Bioresour. Technol. 2021, 342, 126000. [Google Scholar] [CrossRef] [PubMed]
- Tamahkar, E.; Tamahkar, E.; Türkmen, D.; Akgönüllü, S.; Qureshi, T.; Denizli, A. Bacterial Cellulose Nanofibers for Efficient Removal of Hg2+ from Aqueous Solutions. In Nanotechnology for Sustainable Water Resources; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 501–522. ISBN 9781119323655. [Google Scholar]
- Sahari, N.S.; Shahir, S.; Ibrahim, Z.; Hasmoni, S.H.; Altowayti, W.A.H. Bacterial Nanocellulose and Its Application in Heavy Metals and Dyes Removal: A Review. Environ. Sci. Pollut. Res. Int. 2023, 30, 110069–110078. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, Z.; Liao, W.; Wu, Q.; Wei, Z.; Qiu, R.; Gao, T.; Xian, W.; Zhang, K.; Li, M.; et al. Cellulose Nanocrystals for Green Remediation of Contaminated Soil with Multiple Heavy Metals. Environ. Geochem. Health 2025, 47, 133. [Google Scholar] [CrossRef]
- Yu, X.; Liao, W.; Wu, Q.; Wei, Z.; Lin, X.; Qiu, R.; Chen, Y. Green Remediation of Cadmium-Contaminated Soil by Cellulose Nanocrystals. J. Hazard. Mater. 2023, 443, 130312. [Google Scholar] [CrossRef]
- Hassan, W.; Duarte, A.E. Bibliometric Analysis: A Few Suggestions. Curr. Probl. Cardiol. 2024, 49, 102640. [Google Scholar] [CrossRef]
- Johri, A.; Joshi, P.; Kumar, S.; Joshi, G. Metaverse for Sustainable Development in a Bibliometric Analysis and Systematic Literature Review. J. Clean. Prod. 2024, 435, 140610. [Google Scholar] [CrossRef]
- Bennett, A.; Demaine, J.; Dorea, C.; Cassivi, A. A Bibliometric Analysis of Global Research on Drinking Water and Health in Low- and Lower-Middle-Income Countries. J. Water Health 2023, 21, 417–438. [Google Scholar] [CrossRef]
- Asli, H.H.; Tatrishvili, T.; Abraham, A.R.; Haghi, A.K. Sustainable Strategies for Sustainable Water Treatment and Ecosystem Protection Strategies, 1st ed.; Apple Academic Press: New York, NY, USA, 2024; ISBN 9781774915189. [Google Scholar]
- Qi, Y.; He, K. Science and Technology for Water Purification: Achievements and Strategies. Water 2025, 17, 91. [Google Scholar] [CrossRef]
- Li, B.; Wang, N.; Zheng, J.; Zhu, H.; Wang, S.; Ye, E.; Li, Z. Green Nanotechnology for High-performance Impurity Detection and Water Treatment. In Sustainable Nanotechnology; Li, Z., Zheng, J., Ye, E., Eds.; Royal Society of Chemistry: Cambridge, UK, 2022; Volume 10, pp. 33–64. [Google Scholar] [CrossRef]
- Salem, S.S. A mini review on green nanotechnology and its development in biological effects. Arch. Microbiol. 2023, 205, 128. [Google Scholar] [CrossRef]
- Malik, S.; Dhasmana, A.; Preetam, S.; Mishra, Y.K.; Chaudhary, V.; Bera, S.P.; Ranjan, A.; Bora, J.; Kaushik, A.; Minkina, T.; et al. Exploring microbial-based green nanobiotechnology for wastewater remediation: A sustainable strategy. Nanomaterials 2022, 12, 4187. [Google Scholar] [CrossRef]
- Kumar, S. Smart and innovative nanotechnology applications for water purification. Hybrid Adv. 2023, 3, 100044. [Google Scholar] [CrossRef]
- Urso, M.; Ussia, M.; Pumera, M. Smart micro-and nanorobots for water purification. Nat. Rev. Bioeng. 2023, 1, 236–251. [Google Scholar] [CrossRef]
- Saleh, T.A. Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies. Environ. Technol. Innov. 2021, 24, 101821. [Google Scholar] [CrossRef]
- Jain, K.; Patel, A.S.; Pardhi, V.P.; Flora, S.J.S. Nanotechnology in wastewater management: A new paradigm towards wastewater treatment. Molecules 2021, 26, 1797. [Google Scholar] [CrossRef]
- Raja, R.K.; Hazir, S.; Balasubramani, G.; Sivaprakash, G.; Obeth, E.S.J.; Boobalan, T.; Pugazhendhi, A.; Raj, R.H.K.; Arun, A. Green nanotechnology for the environment. In Handbook of Microbial Nanotechnology; Academic Press: Cambridge, MA, USA, 2022; pp. 461–478. [Google Scholar]
- Magalhães-Ghiotto, G.A.; de Oliveira, A.M.; Natal, J.P.; Bergamasco, R.; Gomes, R.G. Green nanoparticles in water treatment: A review of research trends, applications, environmental aspects and large-scale production. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100526. [Google Scholar] [CrossRef]
- Satyam, S.; Patra, S. Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon 2024, 10, e29573. [Google Scholar] [CrossRef]
- Sarma, H.; Joshi, S.J.; Prasad, R.; Jampilek, J. (Eds.) Biobased Nanotechnology for Green Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Kobayashi, T.; Nakajima, L. Sustainable development goals for advanced materials provided by industrial wastes and biomass sources. Curr. Opin. Green Sustain. Chem. 2021, 28, 100439. [Google Scholar] [CrossRef]
- Baglioni, M.; Poggi, G.; Chelazzi, D.; Baglioni, P. Advanced materials in cultural heritage conservation. Molecules 2021, 26, 3967. [Google Scholar] [CrossRef]
- Mayorga-Martinez, C.C.; Zelenka, J.; Klima, K.; Kubanova, M.; Ruml, T.; Pumera, M. Multimodal-Driven Magnetic Microrobots with Enhanced Bactericidal Activity for Biofilm Eradication and Removal from Titanium Mesh. Adv. Mater. 2023, 35, 2300191. [Google Scholar] [CrossRef] [PubMed]
- Adeola, A.O.; Nomngongo, P.N. Advanced polymeric nanocomposites for water treatment applications: A holistic perspective. Polymers 2022, 14, 2462. [Google Scholar] [CrossRef]
- Enang, O.T.; Azeez, B.O.; Ogunyemi, B.T.; Sulayman, A.A.; Araromi, D.O.; Raimi, M.O. Revolutionizing Hemodialysis Water Quality: Development and Evaluation of TiO2 Nanoparticle-Enhanced Microporous Filters. Adv. Nanoparticles 2025, 14, 12–36. [Google Scholar] [CrossRef]
- Aswathi, V.P.; Meera, S.; Maria, C.A.; Nidhin, M. Green synthesis of nanoparticles from biodegradable waste extracts and their applications: A critical review. Nanotechnol. Environ. Eng. 2023, 8, 377–397. [Google Scholar] [CrossRef]




| Methodological Element | Description |
|---|---|
| Database | Scopus |
| Analytical Tools | RStudio 4.3.1, Excel |
| Inclusion Criteria | Peer-reviewed articles |
| Exclusion Criteria | Patents, non-indexed conference papers |
| Bibliometric Indicators | Productivity indices, interconnectivity, thematic trends |
| Normalization Approach | Data validation and structuring |
| Network Visualization | Scientific collaboration maps and thematic evolution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De La Cruz-Noriega, M.; Nazario-Naveda, R.; Benites, S.M.; Narciso, D.D. Bibliometric Trends in Green Nano Microbiology for Advanced Materials in Water Purification: A Sustainable Approach. Mater. Proc. 2025, 27, 2. https://doi.org/10.3390/materproc2025027002
De La Cruz-Noriega M, Nazario-Naveda R, Benites SM, Narciso DD. Bibliometric Trends in Green Nano Microbiology for Advanced Materials in Water Purification: A Sustainable Approach. Materials Proceedings. 2025; 27(1):2. https://doi.org/10.3390/materproc2025027002
Chicago/Turabian StyleDe La Cruz-Noriega, Magaly, Renny Nazario-Naveda, Santiago M. Benites, and Daniel Delfin Narciso. 2025. "Bibliometric Trends in Green Nano Microbiology for Advanced Materials in Water Purification: A Sustainable Approach" Materials Proceedings 27, no. 1: 2. https://doi.org/10.3390/materproc2025027002
APA StyleDe La Cruz-Noriega, M., Nazario-Naveda, R., Benites, S. M., & Narciso, D. D. (2025). Bibliometric Trends in Green Nano Microbiology for Advanced Materials in Water Purification: A Sustainable Approach. Materials Proceedings, 27(1), 2. https://doi.org/10.3390/materproc2025027002