Biomimetic-Hydrogel-Based Electronic Skin: An Overview Based on Patenting Activities and the Market †
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Control Data
3.2. Publication Year
3.3. Patent Applicants
3.4. Patent Classifications
3.5. Patent Jurisdictions
4. Relevant Patents on Hydrogels as Biomimetic Materials for e-Skin Applications
5. Market Overview of e-Skins
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tu, J.; Wang, M.; Li, W.; Su, J.; Li, Y.; Lv, Z.; Li, H.; Feng, X.; Chen, X. Electronic skins with multimodal sensing and perception. Soft Sci. 2023, 3, 25. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, Y.; Zhong, D.; Zhang, Z.; Choudhury, S.; Lai, J.-C.; Gong, H.; Niu, S.; Yan, X.; Zheng, Y.; et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 2023, 380, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cui, B.; Wang, X.; Zheng, M.; Bai, Z.; Yue, O.; Fei, Y.; Jiang, H. Nature-Skin-Derived e-Skin as Versatile “Wound Therapy-Health Monitoring” Bioelectronic Skin-Scaffolds: Skin to Bio-e-Skin. Adv. Healthc. Mater. 2023, 12, 2202971. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Yan, Q.; Liu, H.; He, X.; Zhang, P.; Qin, X.; Wang, R.; Sun, J.; Wang, L.; Cheng, Y. A Stretchable, Breathable, And Self-Adhesive Electronic Skin with Multimodal Sensing Capabilities for Human-Centered Healthcare. Adv. Funct. Mater. 2023, 33, 2303881. [Google Scholar] [CrossRef]
- Li, M.; Miao, C.; Zou, M.; Guo, J.; Wang, H.; Gao, M.; Zhang, H.; Deng, Z. The development of stretchable and self-repairing materials applied to electronic skin. Front. Chem. 2023, 11, 1198067. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Jin, C.; Hu, B.; Liu, G.; Xu, H. Fully stretchable and skin-mountable ionic-gated organic phototransistors based on elastomeric semiconductor and dielectric. Appl. Phys. Lett. 2023, 122, 141104. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, M.; Xie, M.; Sun, M.; Luo, H.; Li, Q.; Chen, X.; Pang, W. Highly Sensitive Piezoelectric E-Skin Design Based on Electromechanical Coupling Concept. Adv. Electron. Mater. 2023, 9, 2201339. [Google Scholar] [CrossRef]
- Sazonov, E.; Daoud, W.A. Grand Challenges in Wearable Electronics. Front. Electron. 2021, 2, 668619. [Google Scholar] [CrossRef]
- Ahmad Tarar, A.; Mohammad, U.; Srivastava, S.K. Wearable Skin Sensors and Their Challenges: A Review of Transdermal, Optical, and Mechanical Sensors. Biosensors 2020, 10, 56. [Google Scholar] [CrossRef]
- Chugh, V.; Basu, A.; Kaushik, A.; Basu, A.K. E-skin—Based advanced wearable technology for Health Management. Curr. Res. Biotechnol. 2023, 5, 100129. [Google Scholar] [CrossRef]
- Zhang, M.; Gong, S.; Hakobyan, K.; Gao, Z.; Shao, Z.; Peng, S.; Wu, S.; Hao, X.; Jiang, Z.; Wong, E.H.; et al. Biomimetic Electronic Skin through Hierarchical Polymer Structural Design. Adv. Sci. 2024, 11, 2309006. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Wang, Z.; Shen, Y.; Tang, L.; Zhang, P.; Wang, Y.; Chen, Y.; Huang, B.; Lu, B. Natural skin-inspired versatile cellulose biomimetic hydrogels. J. Mater. Chem. A 2019, 7, 26442–26455. [Google Scholar] [CrossRef]
- Bai, Z.; Wang, X.; Zheng, M.; Yue, O.; Huang, M.; Zou, X.; Cui, B.; Xie, L.; Dong, S.; Shang, J.; et al. Mechanically Robust and Transparent Organohydrogel-Based E-Skin Nanoengineered from Natural Skin. Adv. Funct. Mater. 2023, 33, 2212856. [Google Scholar] [CrossRef]
- Duan, S.; Shi, Q.; Hong, J.; Zhu, D.; Lin, Y.; Li, Y.; Lei, W.; Lee, C.; Wu, J. Water-Modulated Biomimetic Hyper-Attribute-Gel Electronic Skin for Robotics and Skin-Attachable Wearables. ACS Nano 2023, 17, 1355–1371. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yang, K.; Chen, M.; Leng, X.; Wang, Q.; Lin, M.; Ivanov, A.; Zhang, P.; Andreeva, D.V. Chapter 12—Bioinspired, biomimetic hydrogels. In Sustainable Hydrogels; Thomas, S., Sharma, B., Jain, P., Shekhar, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 325–354. [Google Scholar]
- Tang, L.; Wu, S.; Xu, Y.; Li, Y.; Dai, B.; Yang, C.; Liu, A.; Tang, J.; Gong, L. Design of a DNA-Based Double Network Hydrogel for Electronic Skin Applications. Adv. Mater. Technol. 2022, 7, 2200066. [Google Scholar] [CrossRef]
- Tao, K.; Yu, J.; Zhang, J.; Bao, A.; Hu, H.; Ye, T.; Ding, Q.; Wang, Y.; Lin, H.; Wu, J.; et al. Deep-Learning Enabled Active Biomimetic Multifunctional Hydrogel Electronic Skin. ACS Nano 2023, 17, 16160–16173. [Google Scholar] [CrossRef] [PubMed]
- Hachimi Alaoui, C.; Fatimi, A. A 20-year patent review and innovation trends on hydrogel-based coatings used for medical device biofabrication. J. Biomater. Sci. Polym. Ed. 2023, 34, 1255–1273. [Google Scholar] [CrossRef]
- European Patent Office. Espacenet Patent Search. Available online: https://worldwide.espacenet.com (accessed on 9 August 2024).
- Cambia Institute. The Lens Patent Data Set. Available online: www.lens.org (accessed on 9 August 2024).
- World Intellectual Property Organization. The Patentscope. Available online: https://patentscope.wipo.int (accessed on 9 August 2024).
- Google. Google Patents Research Data. Available online: https://patents.google.com (accessed on 9 August 2024).
- United States Patent and Trademark Office. USPTO Database (PatFT-AppFT). Available online: https://uspto.gov/patents/search (accessed on 9 August 2024).
- Anderson, D.M. Stabilized Microporous Materials and Hydrogel Materials. Patent Application WO1990007545A2, 12 July 1990. [Google Scholar]
- Youn, S.; Ki, M.-R.; Abdelhamid, M.A.A.; Pack, S.-P. Biomimetic Materials for Skin Tissue Regeneration and Electronic Skin. Biomimetics 2024, 9, 278. [Google Scholar] [CrossRef] [PubMed]
- World Intellectual Property Organization. Guide to the International Patent Classification (IPC); WIPO: Geneva, Switzerland, 2020; p. 51. [Google Scholar]
- World Intellectual Property Organization. IPC Publication. Available online: www.wipo.int/classifications/ipc/ipcpub (accessed on 30 July 2023).
- Fatimi, A. Trends and recent patents on cellulose-based biosensors. Eng. Proc. 2022, 16, 12. [Google Scholar] [CrossRef]
- Fatimi, A. Development of the Hydrogel-Based Biosensors: An Overview of Patented Technologies. Eng. Proc. 2023, 48, 41. [Google Scholar] [CrossRef]
- World Intellectual Property Organization. The International Patent Classification Portal. Available online: https://ipcpub.wipo.int/ (accessed on 7 May 2024).
- Fatimi, A. Cellulose-based hydrogels: Patent analysis. J. Res. Updates Polym. Sci. 2022, 11, 16–24. [Google Scholar] [CrossRef]
- Fatimi, A. Chitosan-based hydrogels: Patent analysis. Mater. Proc. 2022, 9, 1. [Google Scholar] [CrossRef]
- Hu, Q.; Jiang, Z.; Dong, X. High-Strength Self-Recoverable Multifunctional Conductive Hydrogel with Temperature/pH Dual Response as Well as Preparation Method and Application of High-Strength Self-Recoverable Multifunctional Conductive Hydrogel. Patent Application CN114316144A, 12 April 2022. [Google Scholar]
- Sun, P.; Di, X.; Wu, G. Preparation Method of Tendon-Imitating Double-Physical-Crosslinking Conductive Hydrogel with Super-Stretching, High Toughness and Swelling Resistance. Patent Application CN114560969A, 31 May 2022. [Google Scholar]
- Gao, W.; Yu, Y.S. Methods and Printed Interface for Robotic Physicochemical Sensing. Patent Application WO2023096936A1, 1 June 2023. [Google Scholar]
- Grand View Research. Electronic Skin Market Size & Share Analysis Report (2022–2029); Grand View Research: San Francisco, CA, USA, 2022; p. 108. [Google Scholar]
- KBV Reseaarch. Global Electronic Skin Market Size (2023–2030); KBV Reseaarch: New York, NY, USA, 2023; p. 276. [Google Scholar]
- Allied Market Research. Electronic Skin Market Size, Share, Competitive Landscape and Trend Analysis Report, by Application—Global Opportunities Analysis and Industry Forecast (2020–2025); Allied Market Research: New York, NY, USA, 2018; p. 118. [Google Scholar]
- Yahoo Finance. Global Electronic Skin Market. Available online: https://finance.yahoo.com/news/global-electronic-skin-market-estimated-133900760.html (accessed on 9 August 2024).
- Market Growth Reports. Global Electronic Skin Market Size, Share and Industry Analysis by Regions, Countries, Types, and Applications (Forecast to 2028); Market Growth Reports: Pune, India, 2022; p. 117. [Google Scholar]
Topics | Patent Applications | Granted Patents |
---|---|---|
E-skins | 1350 | 517 |
Biomimetic hydrogels | 320 | 70 |
Biomimetic-hydrogel-based e-skins | 54 | 6 |
IPC Code | Field * | Patented Application * | Patent Records |
---|---|---|---|
A61B5/00 | Medical instruments, devices, or methods for diagnostic purposes. | Includes a wide range of technologies used in medical diagnostics, such as imaging devices, diagnostic testing equipment, and patient monitoring systems. | 10 |
A61B5/145 | Measurement of blood characteristics in vivo (inside the body). | Specifically, it focuses on devices and methods for measuring various parameters of blood while it is within a living organism, such as gas concentration and pH levels. | 7 |
A61B5/296 | Measurement of pressure in the heart or blood vessels. | Covers instruments and techniques used for measuring pressures within the cardiovascular system, including catheters with pressure sensors and other invasive or non-invasive methods. | 6 |
A61M37/00 | Apparatus for introducing media into the body and percutaneous methods. | Encompasses medical devices used to introduce substances into the body, including, but not limited to, infusion devices, injection devices, and devices for percutaneous administration of medications or fluids. | 6 |
A61N1/30 | Apparatus for iontophoresis or cataphoresis. | Refers to devices and methods used to introduce ions into body tissues using electric currents (iontophoresis) or passive diffusion (cataphoresis), commonly employed in therapeutic treatments or drug delivery systems. | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatimi, A. Biomimetic-Hydrogel-Based Electronic Skin: An Overview Based on Patenting Activities and the Market. Mater. Proc. 2025, 20, 2. https://doi.org/10.3390/materproc2025020002
Fatimi A. Biomimetic-Hydrogel-Based Electronic Skin: An Overview Based on Patenting Activities and the Market. Materials Proceedings. 2025; 20(1):2. https://doi.org/10.3390/materproc2025020002
Chicago/Turabian StyleFatimi, Ahmed. 2025. "Biomimetic-Hydrogel-Based Electronic Skin: An Overview Based on Patenting Activities and the Market" Materials Proceedings 20, no. 1: 2. https://doi.org/10.3390/materproc2025020002
APA StyleFatimi, A. (2025). Biomimetic-Hydrogel-Based Electronic Skin: An Overview Based on Patenting Activities and the Market. Materials Proceedings, 20(1), 2. https://doi.org/10.3390/materproc2025020002