Properties of Thin Film-Covered GaN(0001) Surfaces †
Abstract
:1. Introduction
2. Method
3. Results and Discussion
3.1. Bare GaN(0001) Surface
3.2. Mn on GaN(0001)
3.3. Ni on GaN(0001)
3.4. As and Sb on GaN(0001)
4. Summary
Acknowledgments
References
- Doverspike, K.; Pankove, J. Chapter 9 Doping in the III-Nitrides. In Future Directions in Silicon Photonics; Elsevier BV: Amsterdam, The Netherlands, 1997; Volume 50, pp. 259–277. [Google Scholar]
- Nakamura, S.; Senoh, M.; Mukai, T. Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers. Jpn. J. Appl. Phys. 1991, 30, L1708–L1711. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.; Senoh, M.; Iwasa, N. Thermal Annealing Effects on P-Type Mg-Doped GaN Films. Jpn. J. Appl. Phys. 1992, 31, L139–L142. [Google Scholar] [CrossRef]
- Khan, M.A.; Chen, Q.; Shur, M.S.; Dermott, B.; Higgins, J.; Burm, J.; Schaff, W.; Eastman, L. GaN based heterostructure for high power devices. Solid-State Electron. 1997, 41, 1555–1559. [Google Scholar] [CrossRef]
- Yao, T.; Hong, S.-K. (Eds.) . Oxide and Nitride Semiconductors: Processing, Properties, and Applications; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Flack, T.J.; Pushpakaran, B.; Bayne, S.B. GaN Technology for Power Electronic Applications: A Review. J. Electron. Mater. 2016, 45, 2673–2682. [Google Scholar] [CrossRef]
- Qian, H.; Lee, K.; Vajargah, S.H.; Novikov, S.; Guiney, I.; Zaidi, Z.; Jiang, S.; Wallis, D.; Foxon, C.; Humphreys, C.; et al. Novel GaN-based vertical heterostructure field effect transistor structures using crystallographic KOH etching and overgrowth. J. Cryst. Growth 2017, 459, 185–188. [Google Scholar] [CrossRef]
- Medjdoub, F.; Iniewski, K. Gallium Nitride (GaN); Informa UK Limited: London, UK, 2017. [Google Scholar]
- Mochizuki, K. Vertical GaN and SiC Power Devices; Artech House: Norwood, MA, USA, 2018. [Google Scholar]
- Coffie, R.L. High Power High Frequency Transistors: A Material’s Perspective. In High-Frequency GaN Electronic Devices; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019; pp. 5–41. [Google Scholar]
- Janicki, L.; Kunert, G.; Sawicki, M.; Piskorska-Hommel, E.; Gas, K.; Jakiela, R.; Hommel, D.; Kudrawiec, R. Fermi level and bands offsets determination in insulating (Ga,Mn)N/GaN structures. Sci. Rep. 2017, 7, 41877. [Google Scholar] [CrossRef] [PubMed]
- Gas, K.; Domagala, J.Z.; Jakieła, R.; Kunert, G.; Dluzewski, P.; Piskorska-Hommel, E.; Paszkowicz, W.; Sztenkiel, D.; Winiarski, M.J.; Kowalska, D.; et al. Impact of substrate temperature on magnetic properties of plasma-assisted molecular beam epitaxy grown (Ga,Mn)N. J. Alloy. Compd. 2018, 747, 946–959. [Google Scholar] [CrossRef]
- Pearton, S.J.; Abernathy, C.; Norton, D.; Hebard, A.F.; Park, Y.; Boatner, L.A.; Budai, J.D. Advances in wide bandgap materials for semiconductor spintronics. Mater. Sci. Eng. R Rep. 2003, 40, 137–168. [Google Scholar] [CrossRef]
- Dietl, T.; Ohno, H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev. Mod. Phys. 2014, 86, 187–251. [Google Scholar] [CrossRef]
- Qi, Y.; Sun, G.F.; Weinert, M.; Li, L. Electronic structures of Mn-induced phases on GaN(0001). Phys. Rev. B 2009, 80, 235323. [Google Scholar] [CrossRef]
- Wang, K.; Takeuchi, N.; Chinchore, A.V.; Lin, W.; Liu, Y.; Smith, A.R. Two-dimensional Mn structure on the GaN growth surface and evidence for room-temperature spin ordering. Phys. Rev. B 2011, 83, 165407. [Google Scholar] [CrossRef]
- Cui, Y.; Li, L. A (10 × 10) domain wall structure induced by Mn adsorption on the pseudo-(1 × 1) surface of GaN(). Surf. Sci. 2003, 522, L21–L26. [Google Scholar] [CrossRef]
- Dumont, J.; Kowalski, B.; Pietrzyk, M.; Seldrum, T.; Houssiau, L.; Douhard, B.; Grzegory, I.; Porowski, S.; Sporken, R. Atomically flat GaMnN by diffusion of Mn into GaN(). Superlattices Microstruct. 2006, 40, 607–611. [Google Scholar] [CrossRef]
- Chinchore, A.; Wang, K.; Shi, M.; Liu, Y.; Smith, A.R. Spontaneous formation of quantum height manganese gallium islands and atomic chains on N-polar gallium nitride(0001). Appl. Phys. Lett. 2012, 100, 61602. [Google Scholar] [CrossRef]
- Kowalik, I.A.; Kowalski, B.; Orlowski, B.; Lusakowska, E.; Iwanowski, R.; Mickevičius, S.; Johnson, R.; Grzegory, I.; Porowski, S. Photoemission study of Mn/GaN. Surf. Sci. 2004, 566, 457–461. [Google Scholar] [CrossRef]
- Hwang, J.I.; Osafune, Y.; Kobayashi, M.; Ebata, K.; Ooki, Y.; Ishida, Y.; Fujimori, A.; Takeda, Y.; Okane, T.; Saitoh, Y.; et al. Depth profile high-energy spectroscopic study of Mn-doped GaN prepared by thermal diffusion. J. Appl. Phys. 2007, 101, 103709. [Google Scholar] [CrossRef]
- Grodzicki, M.; Mazur, P.; Krupski, A.; Ciszewski, A. Studies of early stages of Mn/GaN(0001) interface formation using surface-sensitive techniques. VAC 2018, 153, 12–16. [Google Scholar] [CrossRef]
- Grodzicki, M.; Mazur, P.; Brona, J.; Ciszewski, A. MnGa and (Mn,Ga)N-like alloy formation during annealing of Mn/GaN(0001) interface. Appl. Surf. Sci. 2019, 481, 790–794. [Google Scholar] [CrossRef]
- Grodzicki, M.; Mazur, P.; Sabik, A. Electronic properties of p-GaN co-doped with Mn by thermal process: Surface studies. Surf. Sci. 2019, 689, 121460. [Google Scholar] [CrossRef]
- Bermudez, V.M.; Kaplan, R.; Khan, M.A.; Kuznia, J.N. Growth of thin Ni films on GaN(0001)-(1 × 1). Phys. Rev. B 1993, 48, 2436–2444. [Google Scholar] [CrossRef]
- Schmitz, A.C.; Ping, A.T.; Khan, M.A.; Chen, Q.; Yang, J.W.; Adesida, I. Schottky barrier properties of various metals on n-type GaN. Semicond. Sci. Technol. 1996, 11, 1464–1467. [Google Scholar] [CrossRef]
- Schmitz, A.; Ping, A.; Adesida, I.; Khan, M.A. Schottky Barrier Heights of Ni, Pt, Pd, and Au on n-type GaN. MRS Proc. 1995, 395, 831–835. [Google Scholar] [CrossRef]
- Rickert, K.A.; Ellis, A.; Kim, J.K.; Lee, J.-L.; Himpsel, F.J.; Dwikusuma, F.; Kuech, T.F. X-ray photoemission determination of the Schottky barrier height of metal contacts to n–GaN and p–GaN. J. Appl. Phys. 2002, 92, 6671–6678. [Google Scholar] [CrossRef]
- Grodzicki, M.; Mazur, P.; Zuber, S.; Perš, J.; Brona, J.; Ciszewski, A. Effect of annealing on Ni/GaN(0001) contact morphology. Appl. Surf. Sci. 2014, 304, 24–28. [Google Scholar] [CrossRef]
- Grodzicki, M.; Mazur, P.; Sabik, A. Impact of surface photovoltage on photoemission from Ni/p-GaN, Applied Surface Science. 512, 1456; 43. [Google Scholar] [CrossRef]
- Greco, G.; Iucolano, F.; Roccaforte, F. Ohmic contacts to Gallium Nitride materials. Appl. Surf. Sci. 2016, 383, 324–345. [Google Scholar] [CrossRef]
- Wang, W.; Xie, W.; Deng, Z.; Yang, H.; Liao, M.; Li, J.; Luo, X.; Sun, S.; Zhao, D. Performance Improvement of GaN Based Laser Diode Using Pd/Ni/Au Metallization Ohmic Contact. Coatings 2019, 9, 291. [Google Scholar] [CrossRef]
- Li, M.; Li, C.; Wang, F.; Zhang, W. The thermodynamic analysis of the driving force for the Ni/GaN interfacial reaction. Mater. Sci. Eng. A 2006, 422, 316–320. [Google Scholar] [CrossRef]
- Grodzicki, M.; Mazur, P.; Perš, J.; Brona, J.; Zuber, S.; Ciszewski, A. Formation of GaPd2 and GaPd intermetallic compounds on GaN(0001). Appl. Phys. A 2015, 120, 1443–1451. [Google Scholar] [CrossRef]
- Sharafutdinov, I.; Elkjær, C.F.; De Carvalho, H.W.P.; Gardini, D.; Chiarello, G.L.; Damsgaard, C.D.; Wagner, J.B.; Grunwaldt, J.-D.; Dahl, S.; Chorkendorff, I. Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol. J. Catal. 2014, 320, 77–88. [Google Scholar] [CrossRef]
- Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C.F.; Hummelshøj, J.S.; Dahl, S.; Chorkendorff, I.; Nørskov, J.K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 2014, 6, 320–324. [Google Scholar] [CrossRef]
- Kovnir, K.; Armbrüster, M.; Teschner, D.; Venkov, T.; Jentoft, F.; Knop-Gericke, A.; Grin, Y.; Schlögl, R. A new approach to well-defined, stable and site-isolated catalysts. Sci. Technol. Adv. Mater. 2007, 8, 420–427. [Google Scholar] [CrossRef]
- Osswald, J.; Giedigkeit, R.; Jentoft, R.; Armbrüster, M.; Girgsdies, F.; Kovnir, K.; Ressler, T.; Grin, Y.; Schlögl, R. Palladium–gallium intermetallic compounds for the selective hydrogenation of acetylenePart I: Preparation and structural investigation under reaction conditions. J. Catal. 2008, 258, 210–218. [Google Scholar] [CrossRef]
- Osswald, J.; Kovnir, K.; Armbrüster, M.; Giedigkeit, R.; Jentoft, R.E.; Wild, U.; Grin, Y.; Schlögl, R. Palladium–gallium intermetallic compounds for the selective hydrogenation of acetylenePart II: Surface characterization and catalytic performance. J. Catal. 2008, 258, 219–227. [Google Scholar] [CrossRef]
- Kovnir, K.; Armbrüster, M.; Teschner, D.; Venkov, T.; Szentmiklósi, L.; Jentoft, F.; Knop-Gericke, A.; Grin, Y.; Schlögl, R. In situ surface characterization of the intermetallic compound PdGa–A highly selective hydrogenation catalyst. Surf. Sci. 2009, 603, 1784–1792. [Google Scholar] [CrossRef]
- Armbrüster, M.; Schlögl, R.; Grin, Y. Intermetallic compounds in heterogeneous catalysis—A quickly developing field. Sci. Technol. Adv. Mater. 2014, 15, 34803. [Google Scholar] [CrossRef]
- Foxon, C.; Cheng, T.; Novikov, S.; Jeffs, N.; Hughes, O.; Melnik, Y.; E Nikolaev, A.; Dmitriev, V. Gallium-induced surface reconstruction patterns of GaN grown by molecular beam epitaxy. Surf. Sci. 1999, 421, 377–385. [Google Scholar] [CrossRef]
- Hughes, O.; Cheng, T.; Novikov, S.; Foxon, C.; Korakakis, D.; Jeffs, N. RHEED studies of the GaN surface during growth by molecular beam epitaxy. J. Cryst. Growth 1999, 201, 388–391. [Google Scholar] [CrossRef]
- Ramachandran, V.; Lee, C.; Feenstra, R.M.; Smith, A.; Northrup, J.; Greve, D. Structure of clean and arsenic-covered GaN(0001) surfaces. J. Cryst. Growth 2000, 209, 355–363. [Google Scholar] [CrossRef]
- Vézian, S.; Semond, F.; Massies, J.; Bullock, D.; Ding, Z.; Thibado, P. Origins of GaN(0001) surface reconstructions. Surf. Sci. 2003, 541, 242–251. [Google Scholar] [CrossRef]
- Pei, C.W.; Turk, B.; Héroux, J.B.; Wang, W.I. GaN grown by molecular beam epitaxy with antimony as surfactant. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 2001, 19, 1426. [Google Scholar] [CrossRef]
- Gokhale, A.A.; Kuech, T.F.; Mavrikakis, M. Surfactant effect of Sb on GaN growth. J. Cryst. Growth 2005, 285, 146–155. [Google Scholar] [CrossRef]
- Shan, W.; Ager, J.W.; Yu, K.; Walukiewicz, W.; Haller, E.E.; Martín, M.C.; McKinney, W.R.; Yang, W. Dependence of the fundamental band gap of AlxGa1−xN on alloy composition and pressure. J. Appl. Phys. 1999, 85, 8505–8507. [Google Scholar] [CrossRef]
- Wu, J.; Walukiewicz, W.; Yu, K.M.; Denlinger, J.D.; Shan, W.; Ager, J.W.; Kimura, A.; Tang, H.F.; Kuech, T.F. Valence band hybridization in N-rich GaN(1-x)As(x) alloys. Phys. Rev. B. 2004, 70, 115214. [Google Scholar] [CrossRef]
- Zdanowicz, E.; Ciechanowicz, P.; Opołczyńska, K.; Majchrzak, D.; Rousset, J.-G.; Piskorska-Hommel, E.; Grodzicki, M.; Komorowska, K.; Serafinczuk, J.; Hommel, D.; et al. As-related stability of the band gap temperature dependence in N-rich GaNAs. Appl. Phys. Lett. 2019, 115, 092106. [Google Scholar] [CrossRef]
- Grodzicki, M.; Rousset, J.-G.; Ciechanowicz, P.; Piskorska-Hommel, E.; Hommel, D. XPS studies on the role of arsenic incorporated into GaN. VAC 2019, 167, 73–76. [Google Scholar] [CrossRef]
- Yu, K.; Sarney, W.L.; Novikov, S.; Detert, D.; Zhao, R.; Denlinger, J.D.; Svensson, S.; Dubon, O.D.; Walukiewicz, W.; Foxon, C. Highly mismatched N-rich GaN1−xSbx films grown by low temperature molecular beam epitaxy. Appl. Phys. Lett. 2013, 102, 102104. [Google Scholar] [CrossRef]
- Yu, K.; Novikov, S.; Ting, M.; Sarney, W.L.; Svensson, S.; Shaw, M.; Martin, R.W.; Walukiewicz, W.; Foxon, C. Growth and characterization of highly mismatched GaN1−xSbx alloys. J. Appl. Phys. 2014, 116, 123704. [Google Scholar] [CrossRef]
- Segercrantz, N.; Yu, K.; Ting, M.; Sarney, W.L.; Svensson, S.; Novikov, S.; Foxon, C.; Walukiewicz, W. Electronic band structure of highly mismatched GaN1−xSbx alloys in a broad composition range. Appl. Phys. Lett. 2015, 107, 142104. [Google Scholar] [CrossRef]
- Thao, C.P.; Tuan, T.T.A.; Kuo, D.-H.; Ke, W.-C.; Na Thach, T.V.S.; Cao, P.T. Reactively Sputtered Sb-GaN Films and its Hetero-Junction Diode: The Exploration of the n-to-p Transition. Coatings 2020, 10, 210. [Google Scholar] [CrossRef]
- Segercrantz, N.; Baumgartner, Y.; Ting, M.; Yu, K.; Mao, S.S.; Sarney, W.L.; Svensson, S.; Walukiewicz, W. Undoped p-type GaN1–xSbx alloys: Effects of annealing. Appl. Phys. Lett. 2016, 109, 252102. [Google Scholar] [CrossRef]
- Grodzicki, M.; Rousset, J.-G.; Ciechanowicz, P.; Piskorska-Hommel, E.; Hommel, D. Surface studies of physicochemical properties of As films on GaN(0001). Appl. Surf. Sci. 2019, 493, 384–388. [Google Scholar] [CrossRef]
- Grodzicki, M.; Mazur, P.; Pers, J.; Zuber, S.; Ciszewski, A. Sb Layers on p-GaN: UPS, XPS and LEED Study. Acta Phys. Pol. A 2014, 126, 1128–1130. [Google Scholar] [CrossRef]
- Feenstra, R.M.; Northrup, J.E.; Neugebauer, J. Review of Structure of Bare and Adsorbate-Covered GaN(0001) Surfaces. MRS Internet J. Nitride Semicond. Res. 2002, 7. [Google Scholar] [CrossRef]
- Eller, B.S.; Yang, J.; Nemanich, R.J. Electronic surface and dielectric interface states on GaN and AlGaN. J. Vac. Sci. Technol. A 2013, 31, 050807. [Google Scholar] [CrossRef]
- Bermudez, V. The fundamental surface science of wurtzite gallium nitride. Surf. Sci. Rep. 2017, 72, 147–315. [Google Scholar] [CrossRef]
- Majchrzak, D.; Grodzicki, M.; Ciechanowicz, P.; Rousset, J.; Piskorska-Hommel, E.; Hommel, D. The Influence of Oxygen and Carbon Contaminants on the Valence Band of p-GaN(0001). Acta Phys. Pol. A 2019, 136, 585–588. [Google Scholar] [CrossRef]
- Long, J.P.; Bermudez, V.M. Band bending and photoemission-induced surface photovoltages on clean n—And p -GaN (0001) surfaces. Phys. Rev. B 2002, 66, 121308. [Google Scholar] [CrossRef]
- Grodzicki, M.; Moszak, K.; Hommel, D.; Bell, G.R. Band alignment and surface Fermi level pinning in GaN. Appl. Surf. Sci. under review..
- Pugh, S.; Dugdale, D.; Brand, S.; Abram, R. Electronic Structure Calculations on Nitride Semiconductors. Semicond. Sci. Technol. 1999, 14, 23. [Google Scholar] [CrossRef]
- Semiconductors; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1991.
- Madelung, O.; Madelung, O. Semiconductors: Data Handbook; Springer: Berlin, Germany, 2004. [Google Scholar]
- Levinshtein, M.E.; Rumyantsev, S.L.; Shur, M.S. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe | Wiley, 2001. Available online: https://www.wiley.com/en-us/Properties+of+Advanced+Semiconductor+Materials%3A+GaN%2C+AIN%2C+InN%2C+BN%2C+SiC%2C+SiGe-p-9780471358275 (accessed on 28 April 2020).
- Falta, J.; Schmidt, T.; Gangopadhyay, S.; Schulz, C.; Kuhr, S.; Berner, N.; Flege, J.I.; Pretorius, A.; Rosenauer, A.; Sebald, K.; et al. Cleaning and growth morphology of GaN and InGaN surfaces. Phys. Status Solidi (b) 2011, 248, 1800–1809. [Google Scholar] [CrossRef]
- Kova, J.; Zalar, A.; Kovač, J. Surface composition changes in GaN induced by argon ion bombardment. Surf. Interface Anal. 2002, 34, 253–256. [Google Scholar] [CrossRef]
- Despiau-Pujo, E.; Chabert, P. MD simulations of GaN sputtering by Ar[sup +] ions: Ion-induced damage and near-surface modification under continuous bombardment. J. Vac. Sci. Technol. A 2010, 28, 1105. [Google Scholar] [CrossRef]
- Hunt, R.; Vanzetti, L.; Castro, T.; Chen, K.; Sorba, L.; Cohen, P.; Gladfelter, W.; Van Hove, J.; Kuznia, J.; Khan, M.; et al. Electronic structure, surface composition and long-range order in GaN. Phys. B Condens. Matter 1993, 185, 415–421. [Google Scholar] [CrossRef]
- Grodzicki, M.; Mazur, P.; Ciszewski, A. Modification of Electronic Structure of n-GaN(0001) Surface by N + -Ion Bombardment. Acta Phys. Pol. A 2017, 132, 351–353. [Google Scholar] [CrossRef]
- Grodzicki, M.; Mazur, P.; Ciszewski, A. Changes of electronic properties of p-GaN(0 0 0 1) surface after low-energy N+-ion bombardment. Appl. Surf. Sci. 2018, 440, 547–552. [Google Scholar] [CrossRef]
- Koleske, D.; Wickenden, A.E.; Henry, R.; DeSisto, W.J.; Gorman, R.J. Growth model for GaN with comparison to structural, optical, and electrical properties. J. Appl. Phys. 1998, 84, 1998–2010. [Google Scholar] [CrossRef]
- Janzen, O.; Hahn, C.; Kampen, T.; Mönch, W. Explanation of multiplet spots in low-energy electron diffraction patterns of clean GaN surfaces. Eur. Phys. J. B 1999, 7, 1–4. [Google Scholar] [CrossRef]
- Tautz, F.; Sloboshanin, S.; Starke, U.; Schaefer, J. Reactivity and morphology of-faceted and (3 × 3)-reconstructed gan (000) epilayers grown on sapphire (0001). J. Phys. Condens. Matter 1999, 11, 8035. [Google Scholar] [CrossRef]
- Segev, D.; Van De Walle, C.G. Origins of Fermi-level pinning on GaN and InN polar and nonpolar surfaces. EPL (Europhysics Lett. 2006, 76, 305–311. [Google Scholar] [CrossRef]
- Van De Walle, C.G.; Segev, D. Microscopic origins of surface states on nitride surfaces. J. Appl. Phys. 2007, 101, 081704. [Google Scholar] [CrossRef]
- Janicki, Ł.; Gładysiewicz, M.; Misiewicz, J.; Klosek, K.; Sobanska, M.; Kempisty, P.; Zytkiewicz, Z.R.; Kudrawiec, R. Contactless electroreflectance studies of the Fermi level position at the air/GaN interface: Bistable nature of the Ga-polar surface. Appl. Surf. Sci. 2017, 396, 1657–1666. [Google Scholar] [CrossRef]
- Shi, M.; Chinchore, A.; Wang, K.; Mandru, A.-O.; Liu, Y.; Smith, A.R. Formation of manganese δ-doped atomic layer in wurtzite GaN. J. Appl. Phys. 2012, 112, 53517. [Google Scholar] [CrossRef]
- Chinchore, A.; Wang, K.; Lin, W.; Pak, J.; Smith, A.R. Atomic layer structure of manganese atoms on wurtzite gallium nitride (000 1). Appl. Phys. Lett. 2008, 93, 181908. [Google Scholar] [CrossRef]
- Chinchore, A.V.; Wang, K.; Shi, M.; Mandru, A.; Liu, Y.; Haider, M.; Smith, A.R.; Ferrari, V.; Barral, M.A.; Ordejon, P. Manganese 3 × 3 and 3 × 3—R30° structures and structural phase transition on w -GaN(000 1¯) studied by scanning tunneling microscopy and first-principles theory. Phys. Rev. B 2013, 87, 165426. [Google Scholar] [CrossRef]
- Waldrop, J.R.; Grant, R.W.; Wang, Y.C.; Davis, R.F. Metal Schottky barrier contacts to alpha 6H-SiC. J. Appl. Phys. 1992, 72, 4757–4760. [Google Scholar] [CrossRef]
- Waldrop, J.R. Schottky barrier height of metal contacts to p-type alpha 6H-SiC. J. Appl. Phys. 1994, 75, 4548–4550. [Google Scholar] [CrossRef]
- Reed, M.; Ritums, M.; Stadelmaier, H.; Reed, M.; Parker, C.; Bedair, S.; El-Masry, N. Room temperature magnetic (Ga,Mn)N: A new material for spin electronic devices. Mater. Lett. 2001, 51, 500–503. [Google Scholar] [CrossRef]
- Reed, M.L.; El-Masry, N.A.; Stadelmaier, H.H.; Ritums, M.K.; Reed, M.J.; Parker, C.A.; Roberts, J.C.; Bedair, S.M. Room temperature ferromagnetic properties of (Ga, Mn)N. Appl. Phys. Lett. 2001, 79, 3473–3475. [Google Scholar] [CrossRef]
- Hobbs, D.; Hafner, J.; Spišák, D. Understanding the complex metallic element Mn. I. Crystalline and noncollinear magnetic structure of α-Mn. Phys. Rev. B 2003, 68. [Google Scholar] [CrossRef]
- Lu, Q.M.; Yue, M.; Zhang, H.G.; Wang, M.L.; Yu, F.; Huang, Q.Z.; Ryan, D.H.; Altounian, Z. Intrinsic magnetic properties of single-phase Mn1+xGa (0 <x <1) alloys. Sci. Rep. 2015, 5, 17086. [Google Scholar] [CrossRef]
- Arins, A.; Jurca, H.; Zarpellon, J.; Fabrim, Z.; Fichtner, P.F.P.; Varalda, J.; Schreiner, W.; Mosca, D. Correlation between tetragonal zinc-blende structure and magnetocrystalline anisotropy of MnGa epilayers on GaAs(111). J. Magn. Magn. Mater. 2015, 381, 83–88. [Google Scholar] [CrossRef]
- Hwang, J.I.; Ishida, Y.; Kobayashi, M.; Hirata, H.; Takubo, K.; Mizokawa, T.; Fujimori, A.; Okamoto, J.; Mamiya, K.; Saito, Y.; et al. High-energy spectroscopic study of the III-V nitride-based diluted magnetic semiconductorGa1−xMnxN. Phys. Rev. B 2005, 72, 085216. [Google Scholar] [CrossRef]
- Brudnyi, V.N. Gallium Nitride: Charge Neutrality Level and Interfaces. Russ. Phys. J. 2016, 58, 1613–1618. [Google Scholar] [CrossRef]
- Majid, A.; Ahmad, N.; Rizwan, M.; Khan, S.U.-D.; Ali, F.A.A.; Zhu, J. Effects of Mn Ion Implantation on XPS Spectroscopy of GaN Thin Films. J. Electron. Mater. 2017, 47, 1555–1559. [Google Scholar] [CrossRef]
- Kulatov, E.; Nakayama, H.; Mariette, H.; Ohta, H.; Uspenskii, Y.A. Electronic structure, magnetic ordering, and optical properties of GaN and GaAs doped with Mn. Phys. Rev. B 2002, 66, 045203. [Google Scholar] [CrossRef]
- Barthel, S.; Kunert, G.; Gartner, M.; Stoica, M.; Mourad, D.; Kruse, C.; Figge, S.; Hommel, D.; Czycholl, G. Determination of the Fermi level position in dilute magnetic Ga1-xMnxN films. J. Appl. Phys. 2014, 115, 123706. [Google Scholar] [CrossRef]
- Titov, A.; Biquard, X.; Halley, D.; Kuroda, S.; Bellet-Amalric, E.; Mariette, H.; Cibert, J.; Merad, A.E.; Merad, G.; Kanoun, M.-B.; et al. X-ray absorption near-edge structure and valence state of Mn in (Ga,Mn)N. Phys. Rev. B 2005, 72, 115209. [Google Scholar] [CrossRef]
- Nörenberg, C.; Myhra, S.; Dobson, P.J. Scanning probe microscopy studies on the growth of palladium and nickel on GaN(0001). J. Physics: Conf. Ser. 2010, 209, 012021. [Google Scholar] [CrossRef]
- Pers, J.; Grodzicki, M.; Ciszewski, A. Topography of thin films containing Ni-Ga intermetallic compounds formed on GaN(0001). Copernic. Lett. 2016, 7, 1. [Google Scholar] [CrossRef]
- Maruyama, T.; Hagio, Y.; Miyajima, T.; Kijima, S.; Nanishi, Y.; Akimoto, K. Effects of annealing on the interface properties between ni and p-gan. Phys. Status Solidi (A) 2001, 188, 375–378. [Google Scholar] [CrossRef]
- Barinov, A.; Gregoratti, L.; Kaulich, B.; Kiskinova, M.; Rizzi, A. Defect-induced lateral chemical heterogeneity at Ni/GaN interfaces and its effect on the electronic properties of the interface. Appl. Phys. Lett. 2001, 79, 2752–2754. [Google Scholar] [CrossRef]
- Grodzicki, M.; Mazur, P.; Zuber, S.; Pers, J.; Ciszewski, A. Pd/GaN(0001) interface properties. Mater. Sci. 2014, 32, 252–256. [Google Scholar] [CrossRef]
- Hsu, L.-S.; Williams, R.S. Electronic-structure study of the NiGa and the NiIn intermetallic compounds using X-ray photoemission spectroscopy. J. Phys. Chem. Solids 1994, 55, 305–312. [Google Scholar] [CrossRef]
- Hsu, L.-S.; Gweon, G.-H.; Allen, J. Electronic-structure study of Ni3Al, Ni3Ga, Ni3In, and NiGa using X-ray photoemission spectroscopy and Bremsstrahlung isochromat spectroscopy. J. Phys. Chem. Solids 1999, 60, 1627–1631. [Google Scholar] [CrossRef]
- Alonso, M.; Cimino, R.; Horn, K. Surface photovoltage effects in photoemission from metal-GaP(110) interfaces: Importance for band bending evaluation. Phys. Rev. Lett. 1990, 64, 1947–1950. [Google Scholar] [CrossRef]
- Cossu, G.; Ingo, G.M.; Mattogno, G.; Padeletti, G.; Proietti, G. XPS investigation on vacuum thermal desorption of UV/ozone treated GaAs(100) surfaces. Appl. Surf. Sci. 1992, 56, 81–88. [Google Scholar] [CrossRef]
- Kraut, E.A.; Grant, R.W.; Waldrop, J.R.; Kowalczyk, S.P. Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials. Phys. Rev. Lett. 1980, 44, 1620–1623. [Google Scholar] [CrossRef]
- Arabasz, S.; Bergignat, E.; Hollinger, G.; Szuber, J. XPS analysis of surface chemistry of near surface region of epiready GaAs(100) surface treated with (NH4)2Sx solution. Appl. Surf. Sci. 2006, 252, 7659–7663. [Google Scholar] [CrossRef]
- Grodzicki, M.; Mazur, P.; Wasielewski, R.; Ciszewski, A. Physicochemical properties of the Sb/p-SiC interface. VAC 2017, 146, 216–220. [Google Scholar] [CrossRef]
- Wang, M.W. Study of interface asymmetry in InAs–GaSb heterojunctions. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 1995, 13, 1689. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grodzicki, M. Properties of Thin Film-Covered GaN(0001) Surfaces. Mater. Proc. 2020, 2, 30. https://doi.org/10.3390/CIWC2020-06833
Grodzicki M. Properties of Thin Film-Covered GaN(0001) Surfaces. Materials Proceedings. 2020; 2(1):30. https://doi.org/10.3390/CIWC2020-06833
Chicago/Turabian StyleGrodzicki, Miłosz. 2020. "Properties of Thin Film-Covered GaN(0001) Surfaces" Materials Proceedings 2, no. 1: 30. https://doi.org/10.3390/CIWC2020-06833
APA StyleGrodzicki, M. (2020). Properties of Thin Film-Covered GaN(0001) Surfaces. Materials Proceedings, 2(1), 30. https://doi.org/10.3390/CIWC2020-06833