Resistance to Cavitation Erosion and the Sliding Wear of MCrAlY and NiCrMo Metallic Coatings †
Abstract
:1. Introduction
2. Experimental
3. Results
3.1. Coating Characterization
3.2. Sliding Wear Results
3.3. Cavitation Erosion
4. Conclusions
- The sliding wear resistance increases with increasing the nickel content as follows: CoNiCrAlY < NiCoCrAlY < NiCrMoFeCo;
- the friction coefficient increases with increasing the Co content as follows: NiCrMoFeCo < NiCoCrAlY < CoNiCrAlY;
- the resistance to cavitation erosion of the M(Co,Ni)CrAlY coatings is almost two times lower than that of the NiCrMoFeCo deposit;
- a combination of adhesive, oxidation and low-cyclic fatigue is the dominant sliding wear mechanism;
- cavitation erosion damage is induced by plastic deformation of the coating material; it is initiated at the non-uniform areas (unmelted particles, oxides and lamellae borders) and results in the removal of the HVOF deposited material.
Author Contributions
Acknowledgments
References
- Hattori, S.; Mikami, N. Cavitation erosion resistance of stellite alloy weld overlays. Wear 2009, 267, 1954–1960. [Google Scholar] [CrossRef]
- Hejwowski, T.; Marczewska-Boczkowska, K.; Kobayashi, A. A comparative study of electrochemical properties of metallic glasses and weld overlay coatings. Vacuum 2013, 88, 118–123. [Google Scholar] [CrossRef]
- Szala, M.; Hejwowski, T.; Lenart, I. Cavitation erosion resistance of Ni-Co based coatings. Adv. Sci. Technol. Res. J. 2014, 8, 36–42. [Google Scholar]
- Hejwowski, T. Sliding wear resistance of Fe-, Ni- and Co-based alloys for plasma deposition. Vacuum 2006, 80, 1326–1330. [Google Scholar] [CrossRef]
- Kamiński, M.; Budzyński, P.; Szala, M.; Turek, M. Tribological properties of the Stellite 6 cobalt alloy implanted with manganese ions. IOP Conf. Ser. Mater. Sci. Eng. 2018, 421, 032012. [Google Scholar] [CrossRef]
- Janicki, D.M. High Power Diode Laser Cladding of Wear Resistant Metal Matrix Composite Coatings. Available online: https://www.scientific.net/ssp.199.587 (accessed on 4 March 2020).
- Zhang, P.; Jiang, J.H.; Ma, A.B.; Wang, Z.H.; Wu, Y.P.; Lin, P.H. Cavitation Erosion Resistance of WC-Cr-Co and Cr3C2-NiCr Coatings Prepared by HVOF. Available online: https://www.scientific.net/AMR.15-17.199 (accessed on 22 August 2018).
- Szala, M.; Hejwowski, T. Cavitation Erosion Resistance and Wear Mechanism Model of Flame-Sprayed Al2O3-40%TiO2/NiMoAl Cermet Coatings. Coatings 2018, 8, 254. [Google Scholar] [CrossRef]
- Taillon, G.; Pougoum, F.; Lavigne, S.; Ton-That, L.; Schulz, R.; Bousser, E.; Savoie, S.; Martinu, L.; Klemberg-Sapieha, J.-E. Cavitation erosion mechanisms in stainless steels and in composite metal–ceramic HVOF coatings. Wear 2016, 364, 201–210. [Google Scholar] [CrossRef]
- Deng, W.; An, Y.; Hou, G.; Li, S.; Zhou, H.; Chen, J. Effect of substrate preheating treatment on the microstructure and ultrasonic cavitation erosion behavior of plasma-sprayed YSZ coatings. Ultrason. Sonochem. 2018, 46, 1–9. [Google Scholar] [CrossRef]
- Szala, M.; Dudek, A.; Maruszczyk, A.; Walczak, M.; Chmiel, J.; Kowal, M. Effect of atmospheric plasma sprayed TiO2-10% NiAl cermet coating thickness on cavitation erosion, sliding and abrasive wear resistance. Acta Phys. Pol. A. 2019, 136, 335–341. [Google Scholar] [CrossRef]
- Sugiyama, K.; Nakahama, S.; Hattori, S.; Nakano, K. Slurry wear and cavitation erosion of thermal-sprayed cermets. Wear 2005, 258, 768–775. [Google Scholar] [CrossRef]
- Jegadeeswaran, N.; Ramesh, M.R.; Bhat, K.U. Combating Corrosion Degradation of Turbine Materials Using HVOF Sprayed 25% (Cr3C2-25(Ni20Cr)). Available online: https://www.hindawi.com/journals/ijc/2013/824659/ (accessed on 22 August 2018).
- Davis, J.R. Handbook of Thermal Spray Technology; ASM International: Novelty, OH, USA, 2004; ISBN 978-0-87170-795-6. [Google Scholar]
- Szymański, K.; Hernas, A.; Moskal, G.; Myalska, H. Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers—A review. Surf. Coat. Technol. 2015, 268, 153–164. [Google Scholar] [CrossRef]
- Janicki, D. Microstructure and Sliding Wear Behaviour of In-Situ TiC-Reinforced Composite Surface Layers Fabricated on Ductile Cast Iron by Laser Alloying. Materials 2018, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Lin Peng, R.; Li, X.-H.; Johansson, S.; Zhang, P.; Lin Peng, R.; Li, X.-H.; Johansson, S. Investigation of Element Effect on High-Temperature Oxidation of HVOF NiCoCrAlX Coatings. Coatings 2018, 8, 129. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, K.; Li, Y.; Deng, C.; Zeng, K. High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings. Appl. Surf. Sci. 2017, 416, 33–44. [Google Scholar] [CrossRef]
- Saeidi, S.; Voisey, K.T.; McCartney, D.G. Mechanical Properties and Microstructure of VPS and HVOF CoNiCrAlY Coatings. J. Therm. Spray Technol. 2011, 20, 1231–1243. [Google Scholar] [CrossRef]
- Lavigne, S.; Pougoum, F.; Savoie, S.; Martinu, L.; Klemberg-Sapieha, J.E.; Schulz, R. Cavitation erosion behavior of HVOF CaviTec coatings. Wear 2017, 386, 90–98. [Google Scholar] [CrossRef]
- Hong, S.; Wu, Y.; Wang, Q.; Ying, G.; Li, G.; Gao, W.; Wang, B.; Guo, W. Microstructure and cavitation–silt erosion behavior of high-velocity oxygen–fuel (HVOF) sprayed Cr3C2–NiCr coating. Surf. Coat. Technol. 2013, 225, 85–91. [Google Scholar] [CrossRef]
- Oksa, M.; Turunen, E.; Suhonen, T.; Varis, T.; Hannula, S.-P.; Oksa, M.; Turunen, E.; Suhonen, T.; Varis, T.; Hannula, S.-P. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications. Coatings 2011, 1, 17–52. [Google Scholar] [CrossRef]
- Szala, M.; Hejwowski, T.J. Zwiększanie odporności kawitacyjnej stopów metali przez napawanie powłok. Przegląd Spaw. Weld. Technol. Rev. 2015, 87, 56–60. [Google Scholar] [CrossRef]
- Steller, J. International Cavitation Erosion Test and quantitative assessment of material resistance to cavitation. Wear 1999, 233, 51–64. [Google Scholar] [CrossRef]
- Łatka, L.; Szala, M.; Michalak, M.; Pałka, T. Impact of atmospheric plasma spray parameters on cavitation erosion resistance of Al2O3-13%TiO2 coatings. Acta Phys. Pol. A 2019, 136, 342–347. [Google Scholar] [CrossRef]
- Kumar, A.; Boy, J.; Zatorski, R.; Stephenson, L.D. Thermal spray and weld repair alloys for the repair of cavitation damage in turbines and pumps: A technical note. J. Therm. Spray Technol. 2005, 14, 177–182. [Google Scholar] [CrossRef]
- Żebrowski, R.; Walczak, M. Effect of the Shot Peening on Surface Properties and Tribological Performance of Ti-6Al-4V Alloy Produced by Means of DMLS Technology. Arch. Metall. Mater. 2019, 64, 377–383. [Google Scholar]
- Szala, M.; Walczak, M. Cavitation erosion and sliding wear resistance of HVOF coatings. Weld. Technol. Rev. 2018, 90, 31–36. [Google Scholar] [CrossRef]
- ASTM G32-10: Standard Test Method for Cavitation Erosion Using Vibratory Apparatus; ASTM International: West Conshohocken, PA, USA, 2010.
- Szala, M.; Walczak, M.; Pasierbiewicz, K.; Kamiński, M. Cavitation Erosion and Sliding Wear Mechanisms of AlTiN and TiAlN Films Deposited on Stainless Steel Substrate. Coatings 2019, 9, 340. [Google Scholar] [CrossRef]
- Michalak, M.; Łatka, L.; Sokołowski, P.; Niemiec, A.; Ambroziak, A. The Microstructure and Selected Mechanical Properties of Al2O3 + 13 wt % TiO2 Plasma Sprayed Coatings. Coatings 2020, 10, 173. [Google Scholar] [CrossRef]
- Maruszczyk, A.; Dudek, A.; Szala, M. Research into Morphology and Properties of TiO2-NiAl Atmospheric Plasma Sprayed Coating. Adv. Sci. Technol. Res. J. 2017, 11, 204–210. [Google Scholar] [CrossRef]
- Cabral-Miramontes, J.A.; Gaona-Tiburcio, C.; Almeraya-Calderón, F.; Estupiñan-Lopez, F.H.; Pedraza-Basulto, G.K.; Poblano-Salas, C.A. Parameter Studies on High-Velocity Oxy-Fuel Spraying of CoNiCrAlY Coatings Used in the Aeronautical Industry. Available online: https://www.hindawi.com/journals/ijc/2014/703806/ (accessed on 22 August 2018).
Chemical Element, wt% | Specimen Code | ||
---|---|---|---|
A | B | C | |
CoNiCrAlY | NiCoCrAlY | NiCrMoFeCo | |
Ni | 32 | Balanced | Balanced |
Co | Balanced | 22 | 0.5 |
Cr | 21 | 17 | 21.5 |
Al | 8 | 12.5 | - |
Y | 0.5 | 0.5 | - |
Mo | - | - | 8.5 |
Fe | - | - | 3 |
Coating code | Friction Coefficient | |
---|---|---|
Average | SD | |
A | 0.97 | 0.07 |
B | 0.64 | 0.05 |
C | 0.57 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szala, M.; Walczak, M.; Łatka, L.; Gancarczyk, K. Resistance to Cavitation Erosion and the Sliding Wear of MCrAlY and NiCrMo Metallic Coatings. Mater. Proc. 2020, 2, 25. https://doi.org/10.3390/CIWC2020-06846
Szala M, Walczak M, Łatka L, Gancarczyk K. Resistance to Cavitation Erosion and the Sliding Wear of MCrAlY and NiCrMo Metallic Coatings. Materials Proceedings. 2020; 2(1):25. https://doi.org/10.3390/CIWC2020-06846
Chicago/Turabian StyleSzala, Mirosław, Mariusz Walczak, Leszek Łatka, and Kamil Gancarczyk. 2020. "Resistance to Cavitation Erosion and the Sliding Wear of MCrAlY and NiCrMo Metallic Coatings" Materials Proceedings 2, no. 1: 25. https://doi.org/10.3390/CIWC2020-06846
APA StyleSzala, M., Walczak, M., Łatka, L., & Gancarczyk, K. (2020). Resistance to Cavitation Erosion and the Sliding Wear of MCrAlY and NiCrMo Metallic Coatings. Materials Proceedings, 2(1), 25. https://doi.org/10.3390/CIWC2020-06846