Sustainable Hydrogen from Activated Carbon Derived from Fennel Waste †
Abstract
:1. Introduction
Waste-Derived Activated Carbon for Supercapacitors
2. Experiment
2.1. Preparation of an Activated Carbon (AC) Catalyst
Activation of LC-FF
2.2. Metal Incorporation
2.3. Characterization Techniques
Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. SEM
3.2. TEM
3.3. XRD and FTIR Analysis
3.4. Raman Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boretti, A.; Rosa, L. Reassessing the projections of the world water development report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Charkiewicz, A.E.; Backstrand, J.R. Lead toxicity and pollution in Poland. Int. J. Environ. Res. Public Health 2020, 17, 4385. [Google Scholar] [CrossRef] [PubMed]
- Cheekatamarla, P. Hydrogen and the Global Energy Transition—Path to Sustainability and Adoption across All Economic Sectors. Energies 2024, 17, 807. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Gamal, A.; Chakrabortty, R.K.; Ryan, M.J. Evaluation approach for sustainable renewable energy systems under uncertain environment: A case study. Renew. Energy 2021, 168, 1073–1095. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.; Wang, A.; Zhang, T.; Zhang, T.N. P-co-doped Activated carbon derived from coconut shells for highly efficient supercapacitors. Chem. Eng. J. 2020, 394, 124858. [Google Scholar]
- Wang, Z.-D.; Xia, T.; Li, Z.-H.; Shao, M.-F. A review of carbon-based catalysts and catalyst supports for simultaneous organic electro-oxidation and hydrogen evolution reactions. New Carbon Mater. 2024, 39, 67–77. [Google Scholar] [CrossRef]
- Khan, M.; Musharaf, S. Foeniculum vulgare Mill. A medicinal herb. Med. Plant Res. 2014, 32, 4. [Google Scholar]
- Godlewska, K.; Ronga, D.; Michalak, I. Plant extracts-importance in sustainable agriculture. Ital. J. Agron. 2021, 16, 1851. [Google Scholar] [CrossRef]
- Bigdeloo, M.; Kowsari, E.; Ehsani, A.; Ramakrishna, S.; Chinnappan, A. Activated carbon derived from fennel flower waste as high-efficient sustainable materials for improving cycle stability and capacitance performance of electroactive nanocomposite of conductive polymer. J. Energy Storage 2022, 55, 105793. [Google Scholar] [CrossRef]
- Rani, G.M.; Pathania, D.; Umapathi, R.; Rustagi, S.; Huh, Y.S.; Gupta, V.K.; Kaushik, A.; Chaudhary, V. Agro-waste to sustainable energy: A green strategy of converting agricultural waste to nano-enabled energy applications. Sci. Total Environ. 2023, 875, 162667. [Google Scholar]
- Iwanow, M.; Gärtner, T.; Sieber, V.; König, B. Activated carbon as catalyst support: Precursors, preparation, modification and characterization. Beilstein J. Org. Chem. 2020, 16, 1188–1202. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, S.; Wen, X.; Chen, X.; Wen, Y.; Shi, X.; Mijowska, E. High yield conversion of biowaste coffee grounds into hierarchical porous carbon for superior capacitive energy storage. Sci. Rep. 2020, 10, 3518. [Google Scholar] [CrossRef] [PubMed]
- Mabungela, N.; Shooto, N.D.; Dikio, E.D.; Modise, S.J.; Monapathi, M.E.; Mtunzi, F.M.; Xaba, T.; Naidoo, E.B. Multi- application fennel-based composites for the adsorption of Cr (VI) ions from water and control of Escherichia coli and Staphylococcus aureus. Environ. Chem. Ecotoxicol. 2022, 4, 171–185. [Google Scholar] [CrossRef]
- Ehsani, A.; Bigdeloo, M.; Alamgholiloo, H.; Asgari, E.; Sheikhmohammadi, A.; Nazari, S.; Hashemzadeh, B.; Ghasemian, N. Ternary nanocomposite of TiO2-ZnO/MCM-41: Synthesis and electrochemical performance in supercapacitors. J. Energy Storage 2022, 50, 104633. [Google Scholar] [CrossRef]
- Mola, B.A.; Mani, G.; Sambasivam, S.; Pallavolu, M.R.; Ghfar, A.A.; Ouladsmane, M.; Alsawat, M.; Reddy, N.R.; Noh, Y.; Jilcha, S.K.; et al. Crafting nanoflower-built MnCo2S4 anchored to Ni foam as a prominent energy conversion and energy storage electrode for high-performance supercapacitor applications. J. Energy Storage 2021, 43, 103155. [Google Scholar] [CrossRef]
- Palaniappan, N.; Cole, I.S.; Kuznetsov, A.E. Experimental and computational studies of graphene oxide covalently functionalized by octylamine: Electrochemical stability, hydrogen evolution, and corrosion inhibition of the AZ13 Mg alloy in 3.5% NaCl. RSC Adv. 2020, 10, 11426–11434. [Google Scholar] [CrossRef] [PubMed]
- Kahriz, P.K.; Mahdavi, H.; Ehsani, A.; Heidari, A.A.; Bigdeloo, M. Influence of synthesized functionalized reduced graphene oxide aerogel with 4, 4′-methylenedianiline as reducing agent on electrochemical and pseudocapacitance performance of poly orthoaminophenol electroactive film. Electrochim. Acta 2020, 354, 136736. [Google Scholar] [CrossRef]
Kingdom | Plantae |
---|---|
Subkingdom | Tracheobionta |
Division | Magnoliophyta |
Class | Magnoliopsida |
Subclass | Rosidae |
Order | Apiales |
Family | Apiaceae |
Genus | Foeniculum |
Species | F. vulgare |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helally, M.; Alhamdan, M.B.; Baloochi, Z.; Ibrahim, H.M.; Alhamdan, N.; Sliem, M.H.; Al-Qahtani, N. Sustainable Hydrogen from Activated Carbon Derived from Fennel Waste. Mater. Proc. 2024, 18, 4. https://doi.org/10.3390/materproc2024018004
Helally M, Alhamdan MB, Baloochi Z, Ibrahim HM, Alhamdan N, Sliem MH, Al-Qahtani N. Sustainable Hydrogen from Activated Carbon Derived from Fennel Waste. Materials Proceedings. 2024; 18(1):4. https://doi.org/10.3390/materproc2024018004
Chicago/Turabian StyleHelally, Mohamed, Manal B. Alhamdan, Zainab Baloochi, Hadir M. Ibrahim, Naval Alhamdan, Mostafa H. Sliem, and Noora Al-Qahtani. 2024. "Sustainable Hydrogen from Activated Carbon Derived from Fennel Waste" Materials Proceedings 18, no. 1: 4. https://doi.org/10.3390/materproc2024018004
APA StyleHelally, M., Alhamdan, M. B., Baloochi, Z., Ibrahim, H. M., Alhamdan, N., Sliem, M. H., & Al-Qahtani, N. (2024). Sustainable Hydrogen from Activated Carbon Derived from Fennel Waste. Materials Proceedings, 18(1), 4. https://doi.org/10.3390/materproc2024018004