Energy Transition Metals: Future Demand and Low-Carbon Processing Technologies †
Abstract
:1. Introduction
2. Geology of Li, Ni and Co Deposits—Occurrences in Europe
3. Emerging Metal Extraction Technologies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. Study on the Critical Raw Materials for the EU 2023–Final Report. 2023. Available online: https://ec.europa.eu/docsroom/documents/54114?locale=en (accessed on 10 July 2023).
- European Commission. Horizon Europe: Strategic Plan 2021–2024. 2021. Available online: https://www.eeas.europa.eu/sites/default/files/horizon_europe_strategic_plan_2021-2024.pdf (accessed on 10 July 2023).
- Gourcerol, B.; Gloaguen, E.; Melleton, J.; Tuduri, J.; Galiegue, X. Re-Assessing the European Lithium Resource Potential—A Review of Hard-Rock Resources and Metallogeny. Ore Geol. Rev. 2019, 109, 494–519. [Google Scholar] [CrossRef]
- Herrington, R.; Mondillo, N.; Boni, M.; Thorne, R.; Tavlan, M. Bauxite and Nickel-Cobalt Lateritic Deposits of the Tethyan Belt. In Tectonics and Metallogeny of the Tethyan Orogenic Belt; Richards, J., Ed.; Special Publications of the Society of Economic Geologists; GeoScienceWorld: McLean, VA, USA, 2016; Volume 19. [Google Scholar]
- Horn, S.; Gunn, A.G.; Petavratzi, E.; Shaw, R.A.; Eilu, P.; Törmänen, T.; Bjerkgård, T.; Sandstad, J.S.; Jonsson, E.; Kountourelis, S.; et al. Cobalt Resources in Europe and the Potential for New Discoveries. Ore Geol. Rev. 2021, 130, 103915. [Google Scholar] [CrossRef]
- Bartzas, G.; Komnitsas, K. Life cycle assessment of ferronickel production in Greece. Resour. Conserv. Recy. 2015, 105, 113–122. [Google Scholar] [CrossRef]
- Khoo, J.Z.; Haque, N.; Woodbridge, G.; McDonald, R.; Bhattacharya, S. A life cycle assessment of a new laterite processing technology. J. Clean. Prod. 2017, 142, 1765–1777. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komnitsas, K.; Lazos, I.; Eerola, T. Energy Transition Metals: Future Demand and Low-Carbon Processing Technologies. Mater. Proc. 2023, 15, 56. https://doi.org/10.3390/materproc2023015056
Komnitsas K, Lazos I, Eerola T. Energy Transition Metals: Future Demand and Low-Carbon Processing Technologies. Materials Proceedings. 2023; 15(1):56. https://doi.org/10.3390/materproc2023015056
Chicago/Turabian StyleKomnitsas, Konstantinos, Ilias Lazos, and Toni Eerola. 2023. "Energy Transition Metals: Future Demand and Low-Carbon Processing Technologies" Materials Proceedings 15, no. 1: 56. https://doi.org/10.3390/materproc2023015056
APA StyleKomnitsas, K., Lazos, I., & Eerola, T. (2023). Energy Transition Metals: Future Demand and Low-Carbon Processing Technologies. Materials Proceedings, 15(1), 56. https://doi.org/10.3390/materproc2023015056