The Efficient Use of Sulfuric Acid in Bauxite Residue Leaching †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization of the Bauxite Residue and Raffinate Solution
3.2. Neutralization of BR
3.3. Leaching Experiments
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balomenos, E.; Panias, D.; Paspaliaris, I. Energy and Exergy Analysis of the Primary Aluminum Production Processes: A Review on Current and Future Sustainability. Miner. Process. Extr. Metall. Rev. 2011, 32, 69–89. [Google Scholar] [CrossRef]
- Klauber, C.; Gräfe, M.; Power, G. Bauxite Residue Issues: II. Options for Residue Utilization. Hydrometallurgy 2011, 108, 11–32. [Google Scholar] [CrossRef]
- Zhang, N.; Li, H.X.; Liu, X.M. Recovery of Scandium from Bauxite Residue—Red Mud: A Review. Rare Metals 2016, 35, 887–900. [Google Scholar] [CrossRef]
- Barry, T.S.; Uysal, T.; Birinci, M.; Erdemoğlu, M. Thermal and Mechanical Activation in Acid Leaching Processes of Non-Bauxite Ores Available for Alumina Production—A Review. Min. Metall. Explor. 2019, 36, 557–569. [Google Scholar] [CrossRef]
- Angelopoulos, P.; Georgiou, M.; Oustadakis, P.; Taxiarchou, M.; Karadağ, H.; Eker, Y.; Dobra, G.; Boiangiu, A.; Demir, G.; Arslan, S.; et al. Preliminary Characterization of Three Metallurgical Bauxite Residue Samples. Mater. Proc. 2021, 5, 66. [Google Scholar]
- Ochsenkuehn-Petropoulou, M.; Tsakanika, L.A.; Lymperopoulou, T.; Ochsenkuehn, K.M.; Hatzilyberis, K.; Georgiou, P.; Stergiopoulos, C.; Serifi, O.; Tsopelas, F. Efficiency of Sulfuric Acid on Selective Scandium Leachability from Bauxite Residue. Metals 2018, 8, 915. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H. Metallurgical Process for Valuable Elements Recovery from Red Mud—A Review. Hydrometallurgy 2015, 155, 29–43. [Google Scholar] [CrossRef]
- Wang, W.; Pranolo, Y.; Cheng, C.Y. Metallurgical Processes for Scandium Recovery from Various Resources: A Review. Hydrometallurgy 2011, 108, 100–108. [Google Scholar] [CrossRef]
- Balomenos, E.; Davris, P.; Apostolopoulou, A.; Marinos, D.; Mikeli, E.; Toli, A.; Kotsanis, D.; Paschalis, G.; Panias, D. Investigations into Optimized Industrial Pilot Scale BR Leaching for Sc Extraction. In MS Annual Meeting & Exhibition; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Davris, P.; Balomenos, E.; Nazari, G.; Abrenica, G.; Patkar, S.; Xu, W.-Q.; Karnachoritis, Y. Viable Scandium Extraction from Bauxite Residue at Pilot Scale. Mater. Proc. 2022, 5, 129. [Google Scholar]
- Balomenos, E.; Nazari, G.; Davris, P.; Abrenica, G.; Pilihou, A.; Mikeli, E.; Panias, D.; Patkar, S.; Xu, W.Q. Scandium Extraction from Bauxite Residue Using Sulfuric Acid and a Composite Extractant-Enhanced Ion-Exchange Polymer Resin. In Minerals, Metals and Materials Series; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2021; pp. 217–228. [Google Scholar]
- Gates-Rector, S.; Blanton, T. The Powder Diffraction File: A Quality Materials Characterization Database. Powder Diffr. 2019, 34, 352–360. [Google Scholar] [CrossRef]
- Gentzmann, M.C.; Paul, A.; Serrano, J.; Adam, C. Understanding Scandium Leaching from Bauxite Residues of Different Geological Backgrounds Using Statistical Design of Experiments. J. Geochem. Explor. 2022, 240, 107041. [Google Scholar] [CrossRef]
wt% | ppm | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fe2O3 | Al2O3 | SiO2 | CaO | Na2O | MgO | TiO2 | Cr2O3 | ZrO2 | Ga2O3 | NiO | V2O5 | ZnO | Sc |
39.47 | 26.92 | 6.33 | 3.52 | 6.93 | 0.21 | 4.61 | 0.25 | 0.22 | 0.26 | 0.12 | 0.17 | 0.02 | 71.08 |
Components | Fe | Al | Si | Na | Ca | Mg | Ti | Cr | Zr | Ni | Zn | V | Ga | Sc | SO42− | H2SO4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (ppm) | 406.9 | 8900 | 153.3 | 15,300 | 621 | 14.3 | 11.6 | 59.3 | <0.05 | 7.6 | 10.6 | 1 | 1.2 | 2.6 | 94,800 | 23,800 |
wt% | ppm | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fe2O3 | Al2O3 | SiO2 | CaO | Na2O | MgO | TiO2 | Cr2O3 | ZrO2 | Ga2O3 | NiO | V2O5 | ZnO | Sc |
40.54 | 23.94 | 7.65 | 6.97 | 3.22 | 0.20 | 4.97 | 0.19 | 0.16 | 0.28 | 0.10 | 0.18 | 0.02 | 80.48 |
Components | Fe | Al | Si | Na | Ca | Mg | Ti | Cr | Zr | Ni | Zn | V | Ga | Sc | SO42− | H2SO4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Conc. of raffinate (mg/L) | 406.9 | 8900 | 153.3 | 15,300 | 621 | 14.3 | 11.6 | 59.3 | <0.05 | 7.6 | 10.6 | 1 | 1.2 | 2.6 | 94,800 | 23,800 |
Conc. of spent solution (mg/L) | <1 | <10 | 23.23 | 6174 | 700 | 81.4 | <0.1 | <3 | <0.5 | <2 | <1.5 | <0.5 | <1 | <0.5 | 13,300 | 0 |
St.DEV | N/A * | N/A | 5.75 | 563 | 133 | 3.72 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 554 | 0 |
Components | Fe | Al | Si | Na | Ca | Mg | Ti | Cr | Zr | Ni | Zn | V | Ga | Sc | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BR | ppm | 305.2 | 11,000 | 259 | 13,400 | 986.3 | 141.2 | 38.8 | 95.85 | 2.15 | 6.4 | 8.75 | 1.6 | 3.05 | 13.44 |
St.DEV. | 6.65 | 707 | 3.96 | 141 | 42.85 | 3.25 | 5.66 | 4.74 | 0.21 | 0.42 | 4.03 | 0.14 | 0.49 | 0.06 | |
NBR | ppm | 206.85 | 9589 | 241.5 | 12,317 | 1300 | 92.35 | 14.1 | 81.55 | 1.1 | 6.8 | 10.3 | 0.86 | 1.6 | 11.63 |
St.DEV. | 79.41 | 2278 | 33.94 | 824 | 377 | 10.54 | 4.38 | 13.51 | 0.78 | 0.99 | 7.28 | 0.61 | 1.13 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toli, A.; Kotsanis, D.; Psoma, M.; Marinos, D.; Davris, P.; Balomenos, E.; Panias, D. The Efficient Use of Sulfuric Acid in Bauxite Residue Leaching. Mater. Proc. 2023, 15, 53. https://doi.org/10.3390/materproc2023015053
Toli A, Kotsanis D, Psoma M, Marinos D, Davris P, Balomenos E, Panias D. The Efficient Use of Sulfuric Acid in Bauxite Residue Leaching. Materials Proceedings. 2023; 15(1):53. https://doi.org/10.3390/materproc2023015053
Chicago/Turabian StyleToli, Aikaterini, Dimitrios Kotsanis, Maria Psoma, Danai Marinos, Panagiotis Davris, Efthymios Balomenos, and Dimitrios Panias. 2023. "The Efficient Use of Sulfuric Acid in Bauxite Residue Leaching" Materials Proceedings 15, no. 1: 53. https://doi.org/10.3390/materproc2023015053
APA StyleToli, A., Kotsanis, D., Psoma, M., Marinos, D., Davris, P., Balomenos, E., & Panias, D. (2023). The Efficient Use of Sulfuric Acid in Bauxite Residue Leaching. Materials Proceedings, 15(1), 53. https://doi.org/10.3390/materproc2023015053