Laser-Induced Graphene as Electrode Material in Proton-Exchange Membrane Fuel Cells †
Abstract
:1. Introduction
2. Materials and Methods
2.1. SPEEK Films Synthesis
2.2. LIG-S Fabrication
2.3. Physico-Chemical and Morphological Characterizations
2.4. Electrochemical Characterizations
3. Results
3.1. Laser Graphitization of SPEEK
3.2. Electrochemical Performance of LIG-S
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. A Hydrogen Strategy for a Climate-Neutral Europe. 2020. Available online: https://ec.europa.eu/commission/presscorner/api/files/attachment/865942/EU_Hydrogen_Strategy.pdf.pdf (accessed on 4 May 2023).
- Publications Office of the EU. Hydrogen Roadmap Europe. 2019. Available online: https://op.europa.eu/en/publication-detail/-/publication/0817d60d-332f-11e9-8d04-01aa75ed71a1/language-en (accessed on 4 May 2023).
- Niakolas, D.K.; Daletou, M.; Neophytides, S.G.; Vayenas, C.G. Fuel Cells are a commercially viable alternative for the production of “clean” energy. Ambio 2016, 45, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, A.C.; Ghosh, P.C.; Assaud, L. Preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells and unitized regenerative fuel cells: A review. Renew. Sustain. Energy Rev. 2020, 133, 110286. [Google Scholar] [CrossRef]
- Dai, W.; Wang, H.; Yuan, X.Z.; Martin, J.J.; Yang, D.; Qiao, J.; Ma, J. A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2009, 34, 9461–9478. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, S.; Park, M.J. Enhanced proton transport in nanostructured polymer electrolyte/ionic liquid membranes under water–free conditions. Nat. Commun. 2010, 1, 88. [Google Scholar] [CrossRef] [PubMed]
- Lamberti, A.; Serrapede, M.; Ferraro, G.; Fontana, M.; Perrucci, F.; Bianco, S.; Chiolerio, A.; Bocchini, S. All-SPEEK flexible supercapacitor exploiting laser-induced graphenization. 2D Mater. 2017, 4, 035012. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zapeda, F.; Ye, R.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-Induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714. [Google Scholar] [CrossRef] [PubMed]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Gridin, V.; Du, J.; Haller, S.; Theis, P.; Hofmann, K.; Wiberg, G.K.H.; Kramm, U.I.; Arenz, M. GDE vs. RDE: Impact of operation conditions on intrinsic catalytic parameters of FeNC catalyst for the oxygen reduction reaction. Electrochim. Acta 2023, 444, 142012. [Google Scholar] [CrossRef]
- Vracar, L.J. Oxygen Reduction Reaction in Acid Solution. In Enciclopedia of Applied Electrochemistry; Kreysa, G., Ota, K., Savinell, R.F., Eds.; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Nösberger, S.; Du, J.; Quinson, J.; Berner, E.; Zana, A.; Wiberg, G.K.H.; Arenz, M. The gas diffusion electrode setup as a testing platform for evaluating fuel cell catalysts: A comparative RDE-GDE study. Electrochem. Sci. Adv. 2022, 3, e2100190. [Google Scholar] [CrossRef]
- Ehelebe, K.; Schmitt, N.; Sievers, G.; Jensen, A.W.; Hrnjić, A.; Jiménez, P.C.; Kaiser, P.; Geuß, M.; Ku, Y.P.; Jovanovič, P.; et al. Benchmarking Fuel Cell Electrocatalysts Using Gas Diffusion Electrodes: Inter–lab Comparison and Best Practices. ACS Energy Lett. 2022, 7, 816–826. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serra, T.; Massaglia, G.; Zaccagnini, P.; Fontana, M.; Pirri, C.F.; Cicero, G.; Bianco, S.; Quaglio, M. Laser-Induced Graphene as Electrode Material in Proton-Exchange Membrane Fuel Cells. Mater. Proc. 2023, 14, 33. https://doi.org/10.3390/IOCN2023-14520
Serra T, Massaglia G, Zaccagnini P, Fontana M, Pirri CF, Cicero G, Bianco S, Quaglio M. Laser-Induced Graphene as Electrode Material in Proton-Exchange Membrane Fuel Cells. Materials Proceedings. 2023; 14(1):33. https://doi.org/10.3390/IOCN2023-14520
Chicago/Turabian StyleSerra, Tommaso, Giulia Massaglia, Pietro Zaccagnini, Marco Fontana, Candido Fabrizio Pirri, Giancarlo Cicero, Stefano Bianco, and Marzia Quaglio. 2023. "Laser-Induced Graphene as Electrode Material in Proton-Exchange Membrane Fuel Cells" Materials Proceedings 14, no. 1: 33. https://doi.org/10.3390/IOCN2023-14520
APA StyleSerra, T., Massaglia, G., Zaccagnini, P., Fontana, M., Pirri, C. F., Cicero, G., Bianco, S., & Quaglio, M. (2023). Laser-Induced Graphene as Electrode Material in Proton-Exchange Membrane Fuel Cells. Materials Proceedings, 14(1), 33. https://doi.org/10.3390/IOCN2023-14520