Applications of Nanomaterials in Food Industry: A Review †
Abstract
:1. Introduction
2. Nanomaterials for Food Packaging
2.1. Metallic Nanomaterials
2.2. Carbon Nanomaterials
2.3. Organic Nanomaterials
2.4. Silicon Nanomaterials
3. Nanosensors
4. Nanotoxicology
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blecher, K.; Nasir, A.; Friedman, A. The growing role of nanotechnology in combating infectious disease. Virulence 2011, 2, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Piperigkou, Z.; Karamanou, K.; Engin, A.B.; Gialeli, C.; Docea, A.O. Emerging aspects of nanotoxicology in health and disease: From agriculture and food sector to cancer therapeutics. Food Chem. Toxicol. 2016, 91, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Chausali, N.; Saxena, J.; Prasad, R. Recent trends in nanotechnology applications of bio-based packaging. J. Agric. Food Res. 2022, 7, 100257. [Google Scholar] [CrossRef]
- Jana, P.; Dev, A. Carbon quantum dots: A promising nanocarrier for bioimaging and drug delivery in cancer. Mater. Today Commun. 2022, 32, 104068. [Google Scholar] [CrossRef]
- Xie, H.; He, Z.; Liu, Y.; Zhao, C.; Guo, B.; Zhu, C.; Xu, J. Efficient Antibacterial Agent Delivery by Mesoporous Silica Aerogel. ACS Omega 2022, 7, 7638–7647. [Google Scholar] [CrossRef]
- Wang, H.S. Metal–organic frameworks for biosensing and bioimaging applications. Coord. Chem. Rev. 2017, 349, 139–155. [Google Scholar] [CrossRef]
- Tran, H.N.; Nguyen, N.B.; Ly, N.H.; Joo, S.W.; Vasseghian, Y. Core-shell Au@ ZIF-67-based pollutant monitoring of thiram and carbendazim pesticides. Environ. Pollut. 2023, 317, 120775. [Google Scholar] [CrossRef]
- Siddiqui, M.S.; Mandal, A.; Kalita, H.; Aslam, M. Highly sensitive few-layer MoS2 nanosheets as a stable soil moisture and humidity sensor. Sens. Actuators B Chem. 2022, 365, 131930. [Google Scholar] [CrossRef]
- Queiroz, R.N.; Prediger, P.; Vieira, M.G.A. Adsorption of polycyclic aromatic hydrocarbons from wastewater using graphene-based nanomaterials synthesized by conventional chemistry and green synthesis: A critical review. J. Hazard. Mater. 2022, 422, 126904. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, B.; Gao, Z.; Lan, D.; Zhao, Z.; Wei, F.; Wu, G. Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: An overview of recent advances and prospects. J. Alloy. Compd. 2022, 893, 162343. [Google Scholar] [CrossRef]
- Alavi, S.E.; Abdoli, M.A.; Khorasheh, F.; Nezhadbahadori, F.; Bayandori Moghaddam, A. Nanomaterial-assisted pyrolysis of used lubricating oil and fuel recovery. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–15. [Google Scholar] [CrossRef]
- Saleem, H.; Zaidi, S.J.; Ismail, A.F.; Goh, P.S. Advances of nanomaterials for air pollution remediation and their impacts on the environment. Chemosphere 2022, 287, 132083. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Hu, C.; Dichiara, A.B.; Jiang, W.; Gu, J. Cellulose nanofibril/carbon nanomaterial hybrid aerogels for adsorption removal of cationic and anionic organic dyes. Nanomaterials 2020, 10, 169. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Yoshida, M.; Chen, H.C.; Tsunekawa, S.; Lin, Y.F.; Huang, J.H. Production of glycerol carbonate from carboxylation of glycerol with CO2 using ZIF-67 as a catalyst. Chem. Eng. Sci. 2021, 235, 116451. [Google Scholar] [CrossRef]
- Martínez, S.A.H.; Melchor-Martínez, E.M.; Hernández, J.A.R.; Parra-Saldívar, R.; Iqbal, H.M. Magnetic nanomaterials assisted nanobiocatalysis systems and their applications in biofuels production. Fuel 2022, 312, 122927. [Google Scholar] [CrossRef]
- Magnuson, B.A.; Jonaitis, T.S.; Card, J.W. A brief review of the occurrence, use, and safety of food-related nanomaterials. J. Food Sci. 2011, 76, R126–R133. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, M.; Anjum, S.; Hano, C.; Anjum, I.; Abbasi, B.H. An overview of the applications of nanomaterials and nanodevices in the food industry. Foods 2020, 9, 148. [Google Scholar] [CrossRef]
- Huang, Y.; Mei, L.; Chen, X.; Wang, Q. Recent developments in food packaging based on nanomaterials. Nanomaterials 2018, 8, 830. [Google Scholar] [CrossRef]
- Kodithuwakku, P.; Jayasundara, D.; Munaweera, I.; Jayasinghe, R.; Thoradeniya, T.; Weerasekera, M.; Kottegoda, N. A review on recent developments in structural modification of TiO2 for food packaging applications. Prog. Solid State Chem. 2022, 67, 1–24. [Google Scholar] [CrossRef]
- Ameen, F. Optimization of the synthesis of fungus-mediated bi-metallic Ag-Cu nanoparticles. Appl. Sci. 2022, 12, 1384. [Google Scholar] [CrossRef]
- Lu, N.; Chen, Z.; Song, J.; Weng, Y.; Yang, G.; Liu, Q.; Liu, Y. Size Effect of TiO2 Nanoparticles as Food Additive and Potential Toxicity. Food Biophys. 2022, 17, 75–83. [Google Scholar] [CrossRef]
- Raul, P.K.; Thakuria, A.; Das, B.; Devi, R.R.; Tiwari, G.; Yellappa, C.; Kamboj, D.V. Carbon nanostructures as antibacterials and active food-packaging materials: A review. ACS Omega 2022, 7, 11555–11559. [Google Scholar] [CrossRef] [PubMed]
- Goh, K.; Heising, J.K.; Yuan, Y.; Karahan, H.E.; Wei, L.; Zhai, S.; Chen, Y. Sandwich-architectured poly (lactic acid)–graphene composite food packaging films. ACS Appl. Mater. Interfaces 2016, 8, 9994–10004. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mudai, A.; Roy, B.; Basumatary, I.B.; Mukherjee, A.; Dutta, J. Biodegradable hybrid nanocomposite of chitosan/gelatin and green synthesized zinc oxide nanoparticles for food packaging. Foods 2020, 9, 1143. [Google Scholar] [CrossRef] [PubMed]
- Petkoska, A.T.; Daniloski, D.; D’Cunha, N.M.; Naumovski, N.; Broach, A.T. Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res. Int. 2021, 140, 109981. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ding, R.; Yang, S.; Wang, J.; Chen, W.; Zong, L.; Xie, J. Development of thermal insulation packaging film based on poly (vinyl alcohol) incorporated with silica aerogel for food packaging application. Lwt 2020, 129, 109568. [Google Scholar] [CrossRef]
- Guo, Z.; Martucci, N.J.; Liu, Y.; Yoo, E.; Tako, E.; Mahler, G.J. Silicon dioxide nanoparticle exposure affects small intestine function in an in vitro model. Nanotoxicology 2018, 12, 485–508. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Rajakumar, G.; Chung, I.M. Nanotechnology: Current uses and future applications in the food industry. 3 Biotech 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Sun, A.; Chai, J.; Xiao, T.; Shi, X.; Li, X.; Zhao, Q.; Chen, J. Development of a selective fluorescence nanosensor based on molecularly imprinted-quantum dot optosensing materials for saxitoxin detection in shellfish samples. Sens. Actuators B Chem. 2018, 258, 408–414. [Google Scholar] [CrossRef]
- Gao, X.; Sun, G.; Wang, X.; Lin, X.; Wang, S.; Liu, Y. RhB/UiO-66-N3 MOF-based ratiometric fluorescent detection and intracellular imaging of hydrogen sulfide. Sens. Actuators B: Chem. 2021, 331, 129448. [Google Scholar] [CrossRef]
- Tonezzer, M.; Bazzanella, N.; Gasperi, F.; Biasioli, F. Nanosensor Based on Thermal Gradient and Machine Learning for the Detection of Methanol Adulteration in Alcoholic Beverages and Methanol Poisoning. Sensors 2022, 22, 5554. [Google Scholar] [CrossRef] [PubMed]
- Dalal, A.; Rana, J.S.; Kumar, A. Ultrasensitive nanosensor for detection of malic acid in tomato as fruit ripening indicator. Food Anal. Methods 2017, 10, 3680–3686. [Google Scholar] [CrossRef]
- Shah, A. A novel electrochemical nanosensor for the simultaneous sensing of two toxic food dyes. ACS Omega 2020, 5, 6187–6193. [Google Scholar] [CrossRef] [PubMed]
- Leudjo Taka, A.; Tata, C.M.; Klink, M.J.; Mbianda, X.Y.; Mtunzi, F.M.; Naidoo, E.B. A review on conventional and advanced methods for nanotoxicology evaluation of engineered nanomaterials. Molecules 2021, 26, 6536. [Google Scholar] [CrossRef] [PubMed]
- Taherimehr, M.; YousefniaPasha, H.; Tabatabaeekoloor, R.; Pesaranhajiabbas, E. Trends and challenges of biopolymer-based nanocomposites in food packaging. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5321–5344. [Google Scholar] [CrossRef] [PubMed]
- Gautam, K.; Vishvakarma, R.; Sharma, P.; Singh, A.; Gaur, V.K.; Varjani, S.; Srivastava, J.K. Production of biopolymers from food waste: Constrains and perspectives. Bioresour. Technol. 2022, 361, 127650. [Google Scholar] [CrossRef]
Material | Application | Reference |
---|---|---|
Molecularly imprinted silica layers appended to quantum dots (MIP-QDs) | Fluorescence sensor to detect saxitoxin toxin in shellfish | Sun et al. [29] |
Rhodamine B/UiO-66-N3 | H2S detection via reaction-based ratiometric fluorescent nanosensor | Gao et al. [30] |
SnO2 nanowires | Gas sensor to distinguish methanol from ethanol in alcoholic beverages | Tonezzer et al. [31] |
Carboxylated multi-walled carbon nanotubes (c-MWCNT)-modified screen-printed electrode-based bionanosensor | Detecting the time of ripening of tomato with respect to its malic acid concentration | Dalal et al. [32] |
Glassy carbon electrode (GCE) modified with calixarene and gold nanoparticles | Detecting two toxic food dyes (metanil yellow and fast green) | Shah [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozcakir, G. Applications of Nanomaterials in Food Industry: A Review. Mater. Proc. 2023, 14, 22. https://doi.org/10.3390/IOCN2023-14470
Ozcakir G. Applications of Nanomaterials in Food Industry: A Review. Materials Proceedings. 2023; 14(1):22. https://doi.org/10.3390/IOCN2023-14470
Chicago/Turabian StyleOzcakir, Gamze. 2023. "Applications of Nanomaterials in Food Industry: A Review" Materials Proceedings 14, no. 1: 22. https://doi.org/10.3390/IOCN2023-14470
APA StyleOzcakir, G. (2023). Applications of Nanomaterials in Food Industry: A Review. Materials Proceedings, 14(1), 22. https://doi.org/10.3390/IOCN2023-14470