Fiber-Reinforced Alkali-Activated Materials Based on Waste Materials †
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Experimental Methods
2.2.1. Chemical and Mineralogical Properties
2.2.2. Basic Material Properties
2.2.3. Mechanical Properties
2.2.4. Analyzing the Microstructure of the Surface
3. Results and Discussion
3.1. Basic Material Properties
3.2. Chemical and Mineralogical Properties
3.3. Mechanical Properties
3.4. Scanning Electron Microscopy (SEM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Kodur, V.; Cao, L.; Qi, S. Fiber Reinforced Geopolymers for Fire Resistance Applications. Procedia Eng. 2014, 71, 153–158. [Google Scholar] [CrossRef]
- Refaat, M.; Mohsen, A.; Nasr, E.A.R.; Kohail, M. Minimizing energy consumption to produce safe one-part alkali-activated materials. J. Clean. Prod. 2021, 323, 129137. [Google Scholar] [CrossRef]
- Korniejenko, K.; Łach, M. Geopolymers reinforced by short and long fibers—Innovative materials for additive manufacturing. Curr. Opin. Chem. Eng. 2020, 28, 167–172. [Google Scholar] [CrossRef]
- Parathi, S.; Nagarajan, P.; Pallikkara, S.A. Ecofriendly geopolymer concrete: A comprehensive review. Clean Technol. Environ. Policy 2021, 23, 1701–1713. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers and geopolymer new materials. J. Therm. Anal. 1989, 35, 429–444. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Chemistry and Applications, 5th ed.; Institut Géopolymère: Saint-Quentin, France, 2020. [Google Scholar]
- Fořt, J.; Mildner, M.; Keppert, M.; Černý, R. Waste solidified alkalis as activators of aluminosilicate precursors: Functional and environmental evaluation. J. Build. Eng. 2022, 54, 104598. [Google Scholar] [CrossRef]
- Silva, G.; Kim, S.; Bertolotti, B.; Nakamatsu, J.; Aguilar, R. Optimization of a reinforced geopolymer composite using natural fibers and construction wastes. Constr. Build. Mater. 2020, 258, 119697. [Google Scholar] [CrossRef]
- Liew, Y.M.; Kamarudin, H.; Al Bakri, A.M.; Luqman, M.; Nizar, I.K.; Ruzaidi, C.M.; Heah, C.Y. Processing and characterization of calcined kaolin cement powder. Constr. Build. Mater. 2012, 30, 794–802. [Google Scholar] [CrossRef]
- Ranjbar, N.; Mehrali, M.; Mehrali, M.; Alengaram, U.J.; Zamin, M. Cement and Concrete Research Graphene nanoplatelet-fly ash based geopolymer composites. Cem. Concr. Res. 2015, 76, 222–231. [Google Scholar] [CrossRef]
- Sankar, K.; Kriven, W.M. Geopolymer reinforced with E-glass leno weaves. J. Am. Chem. Soc. 2017, 100, 2492–2501. [Google Scholar] [CrossRef]
- Pernica, D.; Reis, P.N.B.; Ferreira, J.A.M.; Louda, P. Effect of test conditions on the bending strength of a geopolymer-reinforced composite. J. Mater. Sci. 2010, 45, 744–749. [Google Scholar] [CrossRef]
Precursor | SiO2 | Al2O3 | Fe2O3 | TiO2 | MgO | CaO | K2O | MnO | SO3 | LOI |
---|---|---|---|---|---|---|---|---|---|---|
GGBFS | 39.1 | 9.8 | 0.5 | 0.3 | 8.7 | 38.8 | 0.7 | 0.9 | 0.6 | 0.6 |
RON D460 HR | 49.1 | 47.3 | 0.9 | 1.6 | 0.1 | 0.2 | 0.5 | --- | --- | 0.3 |
Mixture Designation | GGBFS (kg) | RON (kg) | Fibers WFF (kg) | Fine Aggregate (kg) of Fractions | Solution of 8 M WAA (kg) | ||
---|---|---|---|---|---|---|---|
0.08–0.5 mm | 0.5–1.0 mm | 1.0–2.0 mm | |||||
(a) Composition with fibers | |||||||
80S+20R | 460 | 115 | 5.1 | 380 | 380 | 380 | 296 |
60S+40R | 345 | 230 | |||||
40S+60R | 230 | 345 | |||||
20S+80R | 115 | 460 | |||||
(b) Composition without fibers | |||||||
80S+20R | 460 | 115 | --- | ||||
60S+40R | 345 | 230 | 382 | 382 | 382 | 297 | |
40S+60R | 230 | 345 | |||||
20S+80R | 115 | 460 |
Mixture Designation | Bulk Density (kg/m3) | Matrix Density (kg/m3) | Open Porosity (%) |
---|---|---|---|
80S+20R | 2025 | 2525 | 19.82 |
60S+40R | 2022 | 2495 | 18.97 |
40S+60R | 2039 | 2500 | 18.44 |
20S+80R | 2026 | 2506 | 19.18 |
Minerals | Formula | Individual Phase Content (%) | |||
---|---|---|---|---|---|
80S+20R | 60S+40R | 40S+60R | 20S+80R | ||
Amorphous phase | ----- | 80 | 75 | 63 | 61 |
Calcite | CaCO3 | 3 | 4 | 5 | 4 |
Quartz | SiO2 | 0 | 0 | 2 | 3 |
Akermanite | Ca2Mg(Si2O7) | 5 | 4 | 3 | 2 |
Merwinite | Ca3Mg(SiO4)2 | 3 | 2 | 2 | 0 |
Kaolinite | Al2(OH)4Si2O5 | 2 | 6 | 11 | 13 |
Illite | K0.65Al2.0[Al0.65Si3.35O10](OH)2 | 1 | 2 | 5 | 6 |
Mullite | Al6Si2O13 | 1 | 3 | 5 | 8 |
Zeolite | ----- | 0 | 0 | 0 | 1 |
Hydrotalcite | Mg6Al2CO3(OH)16·4H2O | 5 | 4 | 4 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mildner, M.; Fořt, J.; Černý, R. Fiber-Reinforced Alkali-Activated Materials Based on Waste Materials. Mater. Proc. 2023, 13, 1. https://doi.org/10.3390/materproc2023013001
Mildner M, Fořt J, Černý R. Fiber-Reinforced Alkali-Activated Materials Based on Waste Materials. Materials Proceedings. 2023; 13(1):1. https://doi.org/10.3390/materproc2023013001
Chicago/Turabian StyleMildner, Martin, Jan Fořt, and Robert Černý. 2023. "Fiber-Reinforced Alkali-Activated Materials Based on Waste Materials" Materials Proceedings 13, no. 1: 1. https://doi.org/10.3390/materproc2023013001
APA StyleMildner, M., Fořt, J., & Černý, R. (2023). Fiber-Reinforced Alkali-Activated Materials Based on Waste Materials. Materials Proceedings, 13(1), 1. https://doi.org/10.3390/materproc2023013001