Transition Metal Elemental Mapping of Fe, Ti, and Cr in Lunar Dryden Crater Using Moon Mineralogy Mapper Data †
Abstract
1. Introduction
2. Materials and Methods
2.1. Satelite Data
2.2. Applied Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Fe | Iron |
Ti | Titanium |
Cr | Chromium |
FeO | Iron oxide |
TiO2 | Titanium dioxide |
M3 | Moon Mineralogy Mapper |
SLDEM2015 | Moon LRO LOLA—SELENE Kaguya TC Shaded Relief Merge 60N60S 59m |
IP | Iron parameter |
wt.% | Weight percent |
TP | Titanium parameter |
CP | Chromite parameter |
References
- Wilhelms, D.E.; McCauley, J.F.; Trask, N.J. The Geologic History of the Moon; USGS Professional Paper 1348; USGS: Reston, VA, USA, 1987. [Google Scholar]
- Heiken, G.; Vaniman, D.; French, B.M. (Eds.) Lunar Sourcebook: A User’s Guide to the Moon; CUP Archive; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- O’Brien, P.; Byrne, S. Physical and chemical evolution of lunar mare regolith. J. Geophys. Res. Planets 2021, 126, e2020JE006634. [Google Scholar] [CrossRef]
- Sanders, G.; Larson, W. Progress Made in Lunar In-Situ Resource Utilization under NASA’s Exploration Technology and Development Program. J. Aerosp. Eng. 2012, 26, 5–17. [Google Scholar] [CrossRef]
- Suárez-Valencia, J.E.; Rossi, A.P.; Zambon, F.; Carli, C.; Nodjoumi, G. MoonIndex, an open-source tool to generate spectral indexes for the Moon from M3 data. Earth Space Sci. 2024, 11, e2023EA003464. [Google Scholar] [CrossRef]
- Pieters, C.M.; Boardman, J.; Buratti, B.; Chatterjee, A.; Clark, R.; Glavich, T.; Green, R.; Head, J., III; Isaacson, P.; Malaret, E.; et al. The Moon Mineralogy Mapper (M3) on Chandrayaan-1. Curr. Sci. 2009, 96, 500–505. [Google Scholar]
- Barker, M.K.; Mazarico, E.; Neumann, G.A.; Zuber, M.T.; Haruyama, J.; Smith, D.E. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus 2016, 273, 346–355. [Google Scholar] [CrossRef]
- Wu, Y.; Xue, B.; Zhao, B.; Lucey, P.; Chen, J.; Xu, X.; Ouyang, Z. Global estimates of lunar iron and titanium contents from the Chang’E-1 IIM data. J. Geophys. Res. Planets 2012, 117, e2011JE003879. [Google Scholar] [CrossRef]
- Haldar, S.K. Introduction to Mineralogy and Petrology; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Hargitai, H.; Naß, A. Planetary Mapping: A Historical Overview. In Planetary Cartography and GIS; Hargitai, H., Ed.; Lecture Notes in Geoinformation and Cartography; Springer: Cham, Switzerland, 2019; pp. 27–64. [Google Scholar] [CrossRef]
- Ivanov, I.; Filchev, L. Geomorphological Structural Mapping of Dryden Crater on the Moon Using Mappy Tool Plugin in QGIS Software. In Proceedings of the IV International Symposium on Applied Geoinformatics—ISAG2024, Wrocław, Poland, 9–10 May 2024; Bayram, B., Becek, K., Arampatzis, G., Eds.; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2024; pp. 65–69. [Google Scholar] [CrossRef]
- Lucey, P.G.; Taylor, G.J.; Hawke, B.R.; Spudis, P.D. FeO and TiO2 concentrations in the South Pole-Aitken basin: Implications for mantle composition and basin formation. J. Geophys. Res. Planets 1998, 103, 3701–3708. [Google Scholar] [CrossRef]
- Osinski, G.R.; Melosh, H.J.; Andrews-Hanna, J.; Baker, D.; Denevi, B.; Dhingra, D.; Ghent, R.; Hayne, P.O.; Hill, P.; James, P.B.; et al. Lunar impact features and processes. Rev. Mineral. Geochem. 2023, 89, 339–371. [Google Scholar] [CrossRef]
- O’Brien, P.; Byrne, S. Degradation of the lunar surface by small impacts. Planet. Sci. J. 2022, 3, 235. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Blewett, D.T.; Cloutis, E.A.; Zheng, Y.; Chen, J. Submicroscopic metallic iron in lunar soils estimated from the in situ spectra of the Chang’e-3 mission. Geophys. Res. Lett. 2017, 44, 3485–3492. [Google Scholar] [CrossRef]
- Lucey, P.G.; Blewett, D.T.; Hawke, B.R. Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. J. Geophys. Res. 1998, 103, 3679–3699. [Google Scholar] [CrossRef]
- Lucey, P.G.; Blewett, D.T.; Jolliff, B.L. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. J. Geophys. Res. 2000, 105, 20297–20305. [Google Scholar] [CrossRef]
- Shkuratov, Y.; Kaydash, V.; Korokhin, V.; Velikodsky, Y.; Opanasenko, N.; Videen, G. Optical measurements of the Moon as a tool to study its surface. Planet. Space Sci. 2011, 59, 1326–1371. [Google Scholar] [CrossRef]
- Cloutis, E.A.; Sunshine, J.M.; Morris, R.V. Spectral reflectance-compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry. Meteorit. Planet. Sci. 2004, 39, 545–565. [Google Scholar] [CrossRef]
- Moriarty, D.P.; Simon, S.B.; Shearer, C.K.; Haggerty, S.E.; Petro, N.; Li, S. Orbital characterization of the composition and distribution of spinels across the Crisium region: Insight from Luna 20 samples. J. Geophys. Res. Planets 2023, 128, e2022JE007482. [Google Scholar] [CrossRef]
- Petro, N.E.; Pieters, C.M. Surviving the heavy bombardment: Ancient material at the surface of South Pole–Aitken Basin. J. Geophys. Res. Planets 2004, 109, e2003JE002182. [Google Scholar] [CrossRef]
Spectral Index Name/Autho | General Formula | Band Math |
---|---|---|
Iron Parameter (IP) | −atan(atan((R918 nm/R757 nm) − 1.19)/(R757 nm − 0.06)) | −atan(atan((b17/b9) − 1.19)/(b9 − 0.06)) |
FeO Parameter in wt.% (FeO wt.%) | 8.878 × (Fe1.8732) | 8.878 × (b11.8732) |
Ti Parameter (TP) | atan(atan((R561 nm/R757 nm) − 0.71)/(R757 nm − 0.07)) | atan(atan((b3/b9) − 0.71)/(b9−0.07)) |
TiO2 Parameter in wt.% (TiO2 wt.%) | 2.6275 × (TiO24.2964) | 2.6275 × (b14.2964) |
Chromite Parameter (CP) | (((R1350 nmR750 nm)/600) × 1500 + R1350 nm)/R2750 nm | (((b39b9)/600) × 1500 + b39)/b79) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, I.; Filchev, L. Transition Metal Elemental Mapping of Fe, Ti, and Cr in Lunar Dryden Crater Using Moon Mineralogy Mapper Data. Eng. Proc. 2025, 94, 5. https://doi.org/10.3390/engproc2025094005
Ivanov I, Filchev L. Transition Metal Elemental Mapping of Fe, Ti, and Cr in Lunar Dryden Crater Using Moon Mineralogy Mapper Data. Engineering Proceedings. 2025; 94(1):5. https://doi.org/10.3390/engproc2025094005
Chicago/Turabian StyleIvanov, Iskren, and Lachezar Filchev. 2025. "Transition Metal Elemental Mapping of Fe, Ti, and Cr in Lunar Dryden Crater Using Moon Mineralogy Mapper Data" Engineering Proceedings 94, no. 1: 5. https://doi.org/10.3390/engproc2025094005
APA StyleIvanov, I., & Filchev, L. (2025). Transition Metal Elemental Mapping of Fe, Ti, and Cr in Lunar Dryden Crater Using Moon Mineralogy Mapper Data. Engineering Proceedings, 94(1), 5. https://doi.org/10.3390/engproc2025094005