Menstruation-Related Physical Condition Management for Women Using an Underwear-Type Wearable Biosensor †
Abstract
:1. Introduction
2. Methods
2.1. Dataset
2.2. HRV Indices
2.3. Spearman’s Rank Correlation Coefficient
2.4. Linear Mixed Effect Model
3. Results and Discussion
3.1. Cross-Correlation Analysis
3.2. Regression Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Critchley, H.O.D.; Babayev, E.; Bulun, S.E.; Clark, S.; Garcia-Grau, I.; Gregersen, P.K.; Kilcoyne, A.; Kim, J.-Y.J.; Lavender, M.; Marsh, E.E.; et al. Menstruation: Science and society. Am. J. Obstet. Gynecol. 2020, 223, 624–664. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Urteaga, I.; Shea, A.; Vitzthum, V.J.; Wiggins, C.H.; Elhadad, N. A predictive model for next cycle start date that accounts for adherence in menstrual self-tracking. J. Am. Med. Inform. Assoc. 2022, 29, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Tatsumi, T.; Sampei, M.; Saito, K.; Honda, Y.; Okazaki, Y.; Arata, N.; Narumi, K.; Morisaki, N.; Ishikawa, T.; Narumi, S. Age-dependent and seasonal changes in menstrual cycle length and body temperature based on big data. Obstet. Gynecol. 2020, 136, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, A.J.; Weinberg, C.R.; Baird, D.D. Timing of sexual intercourse in relation to ovulation—Effects on the probability of conception, survival of the preg-nancy, and sex of the baby. N. Engl. J. Med. 1995, 333, 1517–1521. [Google Scholar] [CrossRef] [PubMed]
- Baker, F.C.; Siboza, F.; Fuller, A. Temperature regulation in women: Effects of the menstrual cycle. Temperature 2020, 7, 226–262. [Google Scholar] [CrossRef] [PubMed]
- Barron, M.L.; Fehring, R.J. Basal body temperature assessment: Is it useful to couples seeking pregnancy? MCN Am. J. Matern. Child Nurs. 2005, 30, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Joseph, K.P.; Kannathal, N.; Lim, C.M.; Suri, J.S. HRV: A review. Med. Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar]
- Shaffer, F.; Ginsberg, J.P. An overview of HRV metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, C.; Bates, D.M. Linear mixed-effects models: Basic concepts and examples. In Mixed-Effects Models in Sand S-PLUS; Springer: Berlin/Heidelberg, Germany, 2000; pp. 3–56. [Google Scholar]
- Tang, M.; He, Y.; Zhang, X.; Li, H.; Huang, C.; Wang, C.; Gao, Y.; Li, Y.; Kan, H.; Hu, J.; et al. The acute effects of temperature variability on HRV: A repeated-measure study. Environ. Res. 2021, 194, 110655. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Data (Mean ± SD) |
---|---|
Age | 19.0 ± 0.71 |
Body mass index | 21.6 ± 2.20 |
Menstruation cycle length | 30.4 ± 4.6 |
Index | Index Description |
---|---|
MeanRR | Mean of R-R intervals. |
SDRR | Standard deviation of R-R intervals. |
RMSSD | Square root of the mean of the squares of the differences between adjacent R-R intervals. |
VLF | Power in the frequency band of 0.003–0.04 Hz. |
LF | Power in the frequency band of 0.04–0.15 Hz. |
HF | Power in the frequency band of 0.15–0.4 Hz. |
LF/HF | The value of LF divided by HF. |
Index | (Follicular)–(Pre-Luteal) | (Menstrual)–(Pre-Luteal) | |
---|---|---|---|
MeanRR | Sleep | −0.21 | −0.08 |
Wakefulness | −0.23 | 0.20 | |
SDRR | Sleep | 0.31 | 0.26 |
Wakefulness | 0.12 | 0.44 | |
RMSSD | Sleep | 0.33 | 0.29 |
Wakefulness | −0.03 | 0.27 | |
VLF | Sleep | 0.24 | 0.21 |
Wakefulness | 0.25 | 0.51 | |
LF | Sleep | 0.28 | 0.25 |
Wakefulness | 0.31 | 0.51 | |
HF | Sleep | 0.35 | 0.27 |
Wakefulness | 0.11 | 0.46 | |
LF/HF | Sleep | 0.05 | 0.03 |
Wakefulness | 0.09 | −0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishi, T.; Aikawa, Y.; Kato, K.; Kaneko, M.; Kiyono, K. Menstruation-Related Physical Condition Management for Women Using an Underwear-Type Wearable Biosensor. Eng. Proc. 2025, 92, 5. https://doi.org/10.3390/engproc2025092005
Nishi T, Aikawa Y, Kato K, Kaneko M, Kiyono K. Menstruation-Related Physical Condition Management for Women Using an Underwear-Type Wearable Biosensor. Engineering Proceedings. 2025; 92(1):5. https://doi.org/10.3390/engproc2025092005
Chicago/Turabian StyleNishi, Takuto, Yuki Aikawa, Kyosuke Kato, Miki Kaneko, and Ken Kiyono. 2025. "Menstruation-Related Physical Condition Management for Women Using an Underwear-Type Wearable Biosensor" Engineering Proceedings 92, no. 1: 5. https://doi.org/10.3390/engproc2025092005
APA StyleNishi, T., Aikawa, Y., Kato, K., Kaneko, M., & Kiyono, K. (2025). Menstruation-Related Physical Condition Management for Women Using an Underwear-Type Wearable Biosensor. Engineering Proceedings, 92(1), 5. https://doi.org/10.3390/engproc2025092005