New (t, n)-Threshold P-VSS Schemes Using Fewer Types of Polarizers †
Abstract
:1. Introduction
2. Preliminary Studies
2.1. Definitions
2.2. Related Scheme
3. New (t, n)-Threshold P-VSS Scheme
Algorithm 1 [17] |
Input: a w × h binary secret image (S) and the parameter (n). Output: n shares (G1, …, Gn). Step 1. For each position (i, j) ∈ {(i, j) | 1 ≤ i ≤ w, 1 ≤ j ≤ h}, repeat Steps 2–7. Step 2. If S[i, j] = 0, then s = (0, 0); else, s = (1, 1). Step 3. Randomly generate g1 as (0, 1) or (1, 0). Step 4. Randomly generate g2, g3, …, gt–1 as (0, 0), (1, 0), (0, 1), or (1, 1). Step 5. g2 = s ⊕ g1 ⊕ g2 ⊕ … ⊕ gt–1. Step 6. Set gt+1 = g1, gt+2 = g2, ···, g2t = gt, g2t+1 = g1, …. If (n mod t) = 0, gn = gt; else, gn = g(n mod t). Step 7. Randomly rearrange g1, g2, …, gn to G1[i, j], G2[i, j], …, Gn[i, j]. Step 8. Output the n shares (G1, G2, ⋯ Gn). |
Algorithm 2 New (t, n) P-VSS scheme for even t values |
Input: a w × h binary secret image (S) and the parameter (n). Output: n shares (G1, …, Gn). Step 1. For each pixel (S[i, j]) of the secret image (S), repeat Steps 2–6. Step 2. If S[i, j] = 0, then set s = (0, 0); else, set s = (1, 1). Step 3. For each g1, g2, g3, …, gt−1, randomly select one from (0, 1) or (1, 0) as its value. Step 4. Set gt = s ⊕ g1 ⊕ g2 ⊕ … ⊕ gt−1. Step 5. For i = t + 1 to n, if (i mod t) = 0, gi = gt; else, gi = g(i mod t). Step 6. After randomly rearranging g1, g2, …, gn, assign them to G1[i, j], G2[i, j], …, Gn[i, j] one by one. Step 7. Output G1, G2, ⋯ Gn (the n shares). |
Algorithm 3 New (t, n) P-VSS scheme for odd t values with (0, 0)-type polarizer |
Input: a w × h binary secret image (S) and the parameter (n). Output: n shares (G1, …, Gn). Step 1. For each pixel (S[i, j]) of the secret image (S), repeat Steps 2–7. Step 2. If S[i, j] = 0, then set s = (0, 0); else, set s = (1, 1). Step 3. For each g1, g2, g3, …, gt−1, randomly select one from (0, 1) or (1, 0) as its value. Step 4. Set g′t = s ⊕ g1 ⊕ g2 ⊕ … ⊕ gt−1. Step 5. If g′t = (1, 1), randomly generate gt as (0, 1) or (1, 0). Step 6. For i = t + 1 to n, if (i mod t) = 0, gi = gt; else, gi = g(i mod t). Step 7. After randomly rearranging g1, g2, …, gn, assign them to G1[i, j], G2[i, j], …, Gn[i, j] one by one. Step 8. Output G1, G2, ⋯ Gn (the n shares). |
Algorithm 4 New (t, n) P-VSS scheme for odd t values with (1, 1)-type polarizer |
Input: a w × h binary secret image (S) and the parameter (n). Output: n shares (G1, …, Gn). Step 1. For each pixel (S[i, j]) of the secret image (S), repeat Steps 2–7. Step 2. If S[i, j] = 0, then set s = (0, 0); else, set s = (1, 1). Step 3. For each g1, g2, g3, …, gt−1, randomly select one from (0, 1) or (1, 0) as its value. Step 4. Set g′t = s ⊕ g1 ⊕ g2 ⊕ … ⊕ gt−1. Step 5. If g′t = (0, 0), randomly generate gt as (0, 1) or (1, 0). Step 6. For i = t + 1 to n, if (i mod t) = 0, gi = gt; else, gi = g(i mod t). Step 7. After randomly rearranging g1, g2, …, gn, assign them to G1[i, j], G2[i, j], …, Gn[i, j] one by one. Step 8. Output G1, G2, ⋯ Gn (the n shares). |
4. Experimental Results
4.1. New (4, 5)-Threshold P-VSS Scheme
4.2. New (3, 5)-Threshold P-VSS Scheme with (0, 0)-Type Polarizer
k = 1 | k = 2 | k = 3 | k = 4 | k = 5 | |
---|---|---|---|---|---|
T0 | 1 | 0.699822 | 0.504241 | 0.499704 | 0.499704 |
T1 | 1 | 0.700421 | 0.4504241 | 0.300634 | 0.251052 |
α | 0 | −0.00035 | 0.0684709 | 0.153056 | 0.198754 |
4.3. New (3, 5)-Threshold P-VSS Scheme with (1, 1)-Type Polarizer
k = 1 | k = 2 | k = 3 | k = 4 | k = 5 | |
---|---|---|---|---|---|
T0 | 0.899515 | 0.498276 | 0.347899 | 0.298007 | 0.248115 |
T1 | 0.899489 | 0.500510 | 0.250765 | 0.100511 | 0 |
α | 0.000015 | −0.001482 | 0.077666 | 0.179464 | 0.248115 |
5. Discussion
5.1. New (t, n)-Threshold P-VSS Scheme for Even t Values
5.2. New (t, n)-Threshold P-VSS Scheme for Odd t Values with (0, 0)-Type Polarizer
5.3. New (t, n)-Threshold P-VSS Scheme for Odd t Values with (1, 1)-Type Polarizer
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naor, M.; Shamir, A. Visual cryptography. In Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques, Perugia, Italy, 9–12 May 1994; pp. 1–12. [Google Scholar]
- Kafri, O.; Keren, E. Encryption of pictures and shapes by random grids. Opt. Lett. 1987, 12, 377–379. [Google Scholar] [CrossRef] [PubMed]
- Shyu, S.J. Image encryption by random grids. Pattern Recognit. 2007, 40, 1014–1031. [Google Scholar] [CrossRef]
- Chen, T.H.; Hung, T.H.; Horng, G.; Chang, C.M. Multiple watermarking based on visual secret sharing. Int. J. Innov. Comput. Inf. Control 2008, 4, 3005–3026. [Google Scholar]
- Chen, T.-H.; Tsao, K.-H. Visual secret sharing by random grids revisited. Pattern Recognit. 2009, 42, 2203–2217. [Google Scholar] [CrossRef]
- Shyu, S.J. Image encryption by multiple random grids. Pattern Recognit. 2009, 42, 1582–1596. [Google Scholar] [CrossRef]
- Chen, T.-H.; Tsao, K.-H. Threshold visual secret sharing by random grids. J. Syst. Softw. 2011, 84, 1197–1208. [Google Scholar] [CrossRef]
- Koga, H.; Ueda, E. Basic properties of the (t, n)-threshold visual secret sharing scheme with perfect reconstruction of black pixels. Des. Codes Cryptogr. 2006, 40, 81–102. [Google Scholar] [CrossRef]
- Shankar, K.; Eswaran, P. A new k out of n secret image sharing scheme in visual cryptography. In Proceedings of the 2016 10th International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India, 7–8 January 2016; pp. 1–6. [Google Scholar]
- Salehi, S.; Balafar, M.A. Visual multi secret sharing by cylindrical random grid. J. Inf. Secur. Appl. 2014, 19, 245–255. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Tsai, D.-S.; Horng, G. Visual secret sharing with cheating prevention revisited. Digit. Signal Process. 2013, 23, 1496–1504. [Google Scholar] [CrossRef]
- Chang, J.J.-Y.; Huang, B.-Y.; Juan, J.S.-T. A New Visual Multi-Secrets Sharing Scheme by Random Grids. Cryptography 2018, 2, 24. [Google Scholar] [CrossRef]
- Yan, X.; Lu, Y. Progressive visual secret sharing for general access structure with multiple decryptions. Multimed. Tools Appl. 2018, 77, 2653–2672. [Google Scholar]
- Saha, S.; Chattopadhyay, A.K.; Barman, A.K.; Nag, A.; Nandi, S. Secret image sharing schemes: A comprehensive survey. IEEE Access. 2023, 11, 98333–98361. [Google Scholar]
- Biham, E.; Itzkovitz, A. Visual cryptography with polarization. In Proceedings of the Dagstuhl Seminar on Cryptography, Rehovot, Israel, September 1997. [Google Scholar]
- Yamamoto, H.; Imagawa, T.; Suyama, S. Visual cryptography by use of polarization. In Proceedings of the Multimedia on Mobile Devices 2010, San Jose, CA, USA, 27 January 2010; pp. 74–82. [Google Scholar]
- Huang, C.-W.; Juan, J.S.-T. A (t, n)-Threshold Visual Secret Sharing Scheme Based on Polarization. In Proceedings of the 2023 IEEE 6th International Conference on Knowledge Innovation and Invention (ICKII), Sapporo, Japan, 11–13 August 2023; pp. 172–176. [Google Scholar] [CrossRef]
s | g1 | g2 | g3 |
---|---|---|---|
(0, 0) | (0, 1) | (0, 1) | (0, 0) |
(1, 0) | (1, 1) | ||
(1, 0) | (0, 1) | (1, 1) | |
(1, 0) | (0, 0) | ||
(1, 1) | (0, 1) | (0, 1) | (1, 1) |
(1, 0) | (0, 0) | ||
(1, 0) | (0, 1) | (0, 0) | |
(1, 0) | (1, 1) |
k = 1 | k = 2 | k = 3 | k = 4 | k = 5 | |
---|---|---|---|---|---|
T0 | 1 | 0.5487404 | 0.32311039 | 0.247900 | 0.247900 |
T1 | 1 | 0.5485067 | 0.3227599 | 0.148506 | 0 |
α | 0 | 0.0001525 | 0.0002668 | 0.086544 | 0.247900 |
g1 | g2 | g3 | g1 ⊕ g2 | g1 ⊕ g2 ⊕ g3 |
---|---|---|---|---|
(0, 1) | (0, 1) | (0, 1) | (0, 0) | (0, 1) |
(1, 0) | (1, 0) | |||
(1, 0) | (0, 1) | (1, 1) | (1, 0) | |
(1, 0) | (0, 1) | |||
(1, 0) | (0, 1) | (0, 1) | (1, 1) | (1, 0) |
(1, 0) | (0, 1) | |||
(1, 0) | (0, 1) | (0, 0) | (0, 1) | |
(1, 0) | (1, 0) |
s | g1 ⊕ g2 ⊕ … ⊕ gt−1 | gt |
---|---|---|
(0, 0) | (0, 1) | (0, 1) |
(1, 0) | (1, 0) | |
(1, 1) | (0, 1) | (1, 0) |
(1, 0) | (0, 1) |
s | g1 ⊕ g2 ⊕ … ⊕ gt−1 | gt | g1 ⊕ g2 ⊕ … ⊕ gt |
---|---|---|---|
(0, 0) | (0, 0) | (0, 0) | (0, 1) |
(1, 1) | (0, 1) | (1, 0) | |
(1, 0) | (0, 1) | ||
(1, 1) | (0, 0) | (0, 1) | (0, 1) |
(1, 0) | (1, 0) | ||
(1, 1) | (0, 0) | (1, 1) |
s | g1 ⊕ g2 ⊕ … ⊕ gt−1 | gt | g1 ⊕ g2 ⊕ … ⊕ gt |
---|---|---|---|
(0, 0) | (0, 0) | (0, 1) | (0, 1) |
(1, 0) | (1, 0) | ||
(1, 1) | (1, 1) | (1, 1) | |
(1, 1) | (0, 0) | (1, 1) | (1, 1) |
(1, 1) | (0, 1) | (1, 1) | |
(1, 0) | (1, 1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-W.; Juan, J.S.-T. New (t, n)-Threshold P-VSS Schemes Using Fewer Types of Polarizers. Eng. Proc. 2025, 92, 49. https://doi.org/10.3390/engproc2025092049
Huang C-W, Juan JS-T. New (t, n)-Threshold P-VSS Schemes Using Fewer Types of Polarizers. Engineering Proceedings. 2025; 92(1):49. https://doi.org/10.3390/engproc2025092049
Chicago/Turabian StyleHuang, Cang-Wei, and Justie Su-Tzu Juan. 2025. "New (t, n)-Threshold P-VSS Schemes Using Fewer Types of Polarizers" Engineering Proceedings 92, no. 1: 49. https://doi.org/10.3390/engproc2025092049
APA StyleHuang, C.-W., & Juan, J. S.-T. (2025). New (t, n)-Threshold P-VSS Schemes Using Fewer Types of Polarizers. Engineering Proceedings, 92(1), 49. https://doi.org/10.3390/engproc2025092049