Real-Time Hardness Prediction Using COTS Tactile Sensors in Robotic Grippers †
Abstract
:1. Introduction
2. Method
2.1. COTS Sensor
2.2. Object Selection Based on Shore Scale
2.3. Approach
3. Results and Discussion
3.1. Accuracy
3.2. Real-Time Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amin, Y.; Gianoglio, C.; Valle, M. Embedded real-time objects’ hardness classification for robotic grippers. Future Gener. Comput. Syst. 2023, 148, 211–224. [Google Scholar] [CrossRef]
- Song, Y.; Lv, S.; Wang, F.; Li, M. Hardness-and-Type Recognition of Different Objects Based on a Novel Porous Graphene Flexible Tactile Sensor Array. Micromachines 2023, 14, 217. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Bimbo, J.; Dahiya, R.; Liu, H. Robotic tactile perception of object properties: A review. Mechatronics 2017, 48, 54–67. [Google Scholar] [CrossRef]
- Sharma, Y.; Ferreira, P.; Justham, L. Hardness Classification Using Cost-Effective Off-the-Shelf Tactile Sensors Inspired by Mechanoreceptors. Electronics 2024, 13, 2450. [Google Scholar] [CrossRef]
- Jin, J.; Wang, S.; Zhang, Z.; Mei, D.; Wang, Y. Progress on flexible tactile sensors in robotic applications on objects properties recognition, manipulation and human-machine interactions. Soft Sci. 2023, 3, 8. [Google Scholar] [CrossRef]
- Yuan, W.; Zhu, C.; Owens, A.; Srinivasan, M.A.; Adelson, E.H. Shape-independent hardness estimation using deep learning and a GelSight tactile sensor. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 951–958. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, J.; Yan, Z.; Wang, K.; Mao, J.; Jiang, Z. Hardness recognition of fruits and vegetables based on tactile array information of manipulator. Comput. Electron. Agric. 2021, 181, 105959. [Google Scholar] [CrossRef]
New Unknown Object | FSR (Prediction) | Potentiometer (Prediction) | Vibration (Prediction) |
---|---|---|---|
H(Metal) | H | S | H |
S (TPU) | S | S | S |
S (Sponge) | S | S | S |
New Unknown Object | FSR (Prediction) | Potentiometer (Prediction) | Vibration (Prediction) |
---|---|---|---|
H (Metal) | F | H | F |
F (TPU) | F | F | F |
S (Sponge) | H | S | F |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, Y.; Akhbari, S.; Guo, C.; Ferreria, P.; Justham, L. Real-Time Hardness Prediction Using COTS Tactile Sensors in Robotic Grippers. Eng. Proc. 2024, 82, 111. https://doi.org/10.3390/ecsa-11-22208
Sharma Y, Akhbari S, Guo C, Ferreria P, Justham L. Real-Time Hardness Prediction Using COTS Tactile Sensors in Robotic Grippers. Engineering Proceedings. 2024; 82(1):111. https://doi.org/10.3390/ecsa-11-22208
Chicago/Turabian StyleSharma, Yash, Sina Akhbari, Claire Guo, Pedro Ferreria, and Laura Justham. 2024. "Real-Time Hardness Prediction Using COTS Tactile Sensors in Robotic Grippers" Engineering Proceedings 82, no. 1: 111. https://doi.org/10.3390/ecsa-11-22208
APA StyleSharma, Y., Akhbari, S., Guo, C., Ferreria, P., & Justham, L. (2024). Real-Time Hardness Prediction Using COTS Tactile Sensors in Robotic Grippers. Engineering Proceedings, 82(1), 111. https://doi.org/10.3390/ecsa-11-22208