Graphite-Doped Polyacrylonitrile Nanofiber Mats for Polymer Composite Pipeliners: Absorption Characterization †
Abstract
1. Introduction
2. Materials
2.1. Fabrication of Graphite Doped Nanofiber
2.2. Fabrication of PAN Nanofiber and Graphite-Doped NPC Liners
3. Absorption Tests
- Wa is the weight of the specimen after absorption,
- Wi is the weight of the initial specimen.
- 3.
- Wa is the weight at the current measurement,
- 4.
- Wa−1 is the weight at the previous measurement.
- 5.
- Wb is the weight at the baseline measurement.
4. Results and Discussions
4.1. Morphological Characteristics of Graphite-Doped PAN Nanofiber Mats
4.2. Absorption Characterization of Graphite-Doped PAN NPC Liners
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, Z.; Liuyang, Y.; Dalei, D.; Zhenbo, W.; Frank, C.; Mingyang, Z.; Youhai, J. Development mechanism of internal local corrosion of X80 pipeline steel. J. Mater. Sci. Technol. 2020, 49, 186–201. [Google Scholar] [CrossRef]
- Barton, N.A.; Farewell, T.S.; Hallett, S.H.; Acland, T.F. Improving pipe failure predictions: Factors affecting pipe failure in drinking water networks. Water Res. 2019, 164, 114926–114942. [Google Scholar] [CrossRef] [PubMed]
- Suriani, M.J.; Nik, W.B. Hybrid-biocomposite material for corrosion prevention in pipeline: A review. Corros. Sci. Technol. 2017, 16, 85–89. [Google Scholar]
- Bharatiya, U.; Gal, P.; Agrawal, A.; Shah, M.; Sircar, A. Effect of corrosion on crude oil & natural gas pipeline with emphasis on prevention by ecofriendly corrosion inhibitors: A comprehensive review. J. Bio- Tribo-Corros. 2019, 5, 35. [Google Scholar]
- Fadil, F.; Affandi, N.D.; Misnon, M.I.; Bonnia, N.N.; Harun, A.M.; Alam, M.K. Review on electrospun nanofiber-applied products. Polymers 2021, 13, 2087. [Google Scholar] [CrossRef] [PubMed]
- Haleem, A.; Shafiq, A.; Chen, S.-Q.; Nazar, M. A Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials. Molecules 2023, 28, 1081. [Google Scholar] [CrossRef] [PubMed]
- Aboudi, J.; Arnold, S.; Bednarcyk, B. Micromechanics of Composite Materials; Butterworth-Heinemann: Oxford, UK, 2013; 984p. [Google Scholar]
- Masuelli, M.A. Introduction of fibre-reinforced polymers-polymers and composites: Concepts, properties and processes. In Fiber Reinforced Polymers-the Technology Applied for Concrete Repair; IntechOpen: London, UK, 2013; pp. 3–40. [Google Scholar]
- Fan, Z.; Santare, M.H.; Advani, S.G. Interlaminar shear strength of glass fibre reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 2008, 39, 540–554. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, L.; Rahman, A.; Zhou, Z.; Wu, X.F.; Fong, H. Hybrid multi-scale epoxy composite made of conventional carbon fibre fabrics with interlaminar regions containing electrospun carbon nanofiber mats. Compos. Part A Appl. Sci. Manuf. 2011, 42, 2036–2042. [Google Scholar]
- Peng, K.; Wan, Y.J.; Ren, D.Y.; Zeng, Q.W.; Tang, L.C. Scalable preparation of multiscale carbon nanotube/glass fiber reinforcements and their application in polymer composites. Fibers Polym. 2014, 15, 1242–1250. [Google Scholar] [CrossRef]
- Srivatsan, T.S. A Review of Hybrid Materials: Synthesis, Characterization, and Application G. Kickelbick (Ed.). Mater. Manuf. Process 2009, 24, 1231. [Google Scholar] [CrossRef]
- Rivero, P.J.; Redin, D.M.; Rodríguez, R.J. Electrospinning: A Powerful Tool to Improve the Corrosion Resistance of Metallic Surfaces Using Nanofibrous Coatings. Metals 2020, 10, 350. [Google Scholar] [CrossRef]
- Condé-Wolter, J.; Ruf, M.G.; Liebsch, A.; Lebelt, T.; Koch, I.; Drechsler, K.; Gude, M. Hydrogen permeability of thermoplastic composites and liner systems for future mobility applications. Compos. Part A Appl. Sci. Manuf. 2023, 167, 107446–107459. [Google Scholar] [CrossRef]
- Balan, N.V.M. Graphite Doped PAN Nanofiber Mats Infused Polymer Composite Pipeliners: Experimental Diffusion Characterization. Master’s Thesis, University of Regina, Regina, SK, Canada, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aletan, D.; Balan, N.; Muthu, J. Graphite-Doped Polyacrylonitrile Nanofiber Mats for Polymer Composite Pipeliners: Absorption Characterization. Eng. Proc. 2024, 76, 66. https://doi.org/10.3390/engproc2024076066
Aletan D, Balan N, Muthu J. Graphite-Doped Polyacrylonitrile Nanofiber Mats for Polymer Composite Pipeliners: Absorption Characterization. Engineering Proceedings. 2024; 76(1):66. https://doi.org/10.3390/engproc2024076066
Chicago/Turabian StyleAletan, Dirar, Nithish Balan, and Jacob Muthu. 2024. "Graphite-Doped Polyacrylonitrile Nanofiber Mats for Polymer Composite Pipeliners: Absorption Characterization" Engineering Proceedings 76, no. 1: 66. https://doi.org/10.3390/engproc2024076066
APA StyleAletan, D., Balan, N., & Muthu, J. (2024). Graphite-Doped Polyacrylonitrile Nanofiber Mats for Polymer Composite Pipeliners: Absorption Characterization. Engineering Proceedings, 76(1), 66. https://doi.org/10.3390/engproc2024076066