Photoelectrocatalytic Degradation of C.I. Basic Blue 9 in Water under UV and Visible Light Illumination Using Copper/Sulfur Co-Doped Titanium Dioxide Nanotubes †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Pristine (TiNTs) and Copper/Sulfur Co-Doped (Cu/S-TiNTs) Titanium Dioxide Nanotus
2.3. Textile Dye Degradation in a Batch Photoelectrochemical Reactor
3. Results
3.1. Photoelectrocatalytic Degradation under Ultraviolet Light
3.2. Photoelectrocatalytic Degradation under Visible Light
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akira, F.; Kenichi, H. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37. [Google Scholar]
- Suhadolnik, L.; Pohar, A.; Novak, U.; Likozar, B.; Mihelič, A.; Čeh, M. Continuous photocatalytic, electrocatalytic and photo-electrocatalytic degradation of a reactive textile dye for wastewater-treatment processes: Batch, microreactor and scaled-up operation. J. Ind. Eng. Chem. 2019, 72, 178–188. [Google Scholar] [CrossRef]
- Karlsson, M.C.F.; Abbas, Z.; Bordes, R.; Cao, Y.; Larsson, A.; Taylor, P.; Steenari, B.M. Characterisation of silicon, zirconium, and a coated titanium dioxide pigments recovered from paint waste. Dye. Pigment. 2019, 162, 145–152. [Google Scholar] [CrossRef]
- Mahmoud, M.S.; Ahmed, E.; Farghali, A.A.; Zaki, A.H.; Abdelghani, E.A.M.; Barakat, N.A.M. Influence of Mn, Cu, and Cd–doping for titanium oxide nanotubes on the photocatalytic activity toward water splitting under visible light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2018, 554, 100–109. [Google Scholar] [CrossRef]
- Krysiak, O.A.; Barczuk, P.J.; Bienkowski, K.; Wojciechowski, T.; Augustynski, J. The photocatalytic activity of rutile and anatase TiO2 electrodes modified with plasmonic metal nanoparticles followed by photoelectrochemical measurements. Catal. Today 2019, 321–322, 52–58. [Google Scholar] [CrossRef]
- Henderson, M.A. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 2011, 66, 185–297. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Juang, R.S. Efficient removal of cationic dyes from water by a combined adsorption-photocatalysis process using platinum-doped titanate nanomaterials. J. Taiwan Inst. Chem. Eng. 2019, 99, 166–179. [Google Scholar] [CrossRef]
- Merenda, A.; Weber, M.; Bechelany, M.; Allioux, F.M.; Hyde, L.; Kong, L.; Dumée, L.F. Fabrication of Pd-TiO2 nanotube photoactive junctions via Atomic Layer Deposition for persistent pesticide pollutants degradation. Appl. Surf. Sci. 2019, 483, 219–230. [Google Scholar] [CrossRef]
- Lin, J.C.T.; Sopajaree, K.; Jitjanesuwan, T.; Lu, M.C. Application of visible light on copper-doped titanium dioxide catalyzing degradation of chlorophenols. Sep. Purif. Technol. 2018, 191, 233–243. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Gyawali, G.; Hoon, J.S.; Sekino, T.; Lee, S.W. Cr-doped TiO2 nanotubes with a double-layer model: An effective way to improve the efficiency of dye-sensitized solar cells. Appl. Surf. Sci. 2018, 458, 523–528. [Google Scholar] [CrossRef]
- Meksi, M.; Kochkar, H.; Berhault, G.; Guillard, C. Effect of cerium content and post-thermal treatment on doped anisotropic TiO2 nanomaterials and kinetic study of the photodegradation of formic acid. J. Mol. Catal. A Chem. 2015, 409, 162–170. [Google Scholar] [CrossRef]
- Reli, M.; Ambrožová, N.; Šihor, M.; Matějová, L.; Čapek, L.; Obalová, L.; Matěj, Z.; Kotarba, A.; Kočí, K. Novel cerium doped titania catalysts for photocatalytic decomposition of ammonia. Appl. Catal. B 2015, 178, 108–116. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Wei, Z.; Shi, L. A Fundamental DFT Study of Anatase (TiO2) Doped with 3d Transition Metals for High Photocatalytic Activities. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2018, 33, 403–408. [Google Scholar] [CrossRef]
- Xie, K.; Jia, Q.; Wang, Y.; Zhang, W.; Xu, J. The electronic structure and optical properties of Anatase TiO2 with rare earth metal dopants from first-principles calculations. Materials 2018, 11, 179. [Google Scholar] [CrossRef]
- Peighambardoust, N.S.; Asl, S.K.; Mohammadpour, R.; Asl, S.K. Band-gap narrowing and electrochemical properties in N-doped and reduced anodic TiO2 nanotube arrays. Electrochim. Acta 2018, 270, 245–255. [Google Scholar] [CrossRef]
- Mahmoud, M.S.; Akhtar, M.S.; Mohamed, I.M.A.; Hamdan, R.; Dakka, Y.A.; Barakat, N.A.M. Demonstrated photons to electron activity of S-doped TiO2 nanofibers as photoanode in the DSSC. Mater. Lett. 2018, 225, 77–81. [Google Scholar] [CrossRef]
- Cinelli, G.; Cuomo, F.; Ambrosone, L.; Colella, M.; Ceglie, A.; Venditti, F.; Lopez, F. Photocatalytic degradation of a model textile dye using Carbon-doped titanium dioxide and visible light. J. Water Process Eng. 2017, 20, 71–77. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P.; Robert, D. Modified TiO2 for environmental photocatalytic applications: A review. Ind. Eng. Chem. Res. 2013, 52, 3581–3599. [Google Scholar] [CrossRef]
- DiPaola, A.; Marcì, G.; Ikeda, S.; Ohtani, B.; Palmisano, L. Transition metal doped TiO2: Physical properties and photocatalytic behavior. Int. J. Photoenergy 2001, 3, 171–176. [Google Scholar]
- Chauhan, N.; Singh, V.; Kumar, S.; Kumari, M.; Sirohi, K. Synthesis of nitrogen & palladium co-doped mesoporous titanium dioxide nanoparticles via evaporation induced self assembly method and study of their photocatalytic properties. J. Mol. Struct. 2019, 1185, 219–228. [Google Scholar] [CrossRef]
- Ratso, S.; Käärik, M.; Kook, M.; Paiste, P.; Aruväli, J.; Vlassov, S.; Kisand, V.; Leis, J.; Kannan, A.M.; Tammeveski, K. High performance catalysts based on Fe/N co-doped carbide-derived carbon and carbon nanotube composites for oxygen reduction reaction in acid media. Int. J. Hydrog. Energy 2019, 44, 12636–12648. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Brillas, E. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol. C Photochem. Rev. 2017, 31, 1–35. [Google Scholar] [CrossRef]
- da Rosa, A.P.P.; Cavalcante, R.P.; da Silva, D.A.; da Silva, L.d.M.; da Silva, T.F.; Gozzi, F.; McGlynn, E.; Brady-Boyd, A.; Casagrande, G.A.; Wender, H.; et al. H2O2-assisted photoelectrocatalytic degradation of Mitoxantrone using CuO nanostructured films: Identification of by-products and toxicity. Sci. Total Environ. 2019, 651, 2845–2856. [Google Scholar] [CrossRef] [PubMed]
- Mazierski, P.; Borzyszkowska, A.F.; Wilczewska, P.; Białk-Bielińska, A.; Zaleska-Medynska, A.; Siedlecka, E.M.; Pieczyńska, A. Removal of 5-fluorouracil by solar-driven photoelectrocatalytic oxidation using Ti/TiO2(NT) photoelectrodes. Water Res. 2019, 157, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Cottineau, T.; Béalu, N.; Gross, P.A.; Pronkin, S.N.; Keller, N.; Savinova, E.R.; Keller, V. One step synthesis of niobium doped titania nanotube arrays to form (N,Nb) co-doped TiO2 with high visible light photoelectrochemical activity. J. Mater. Chem. A Mater. 2013, 1, 2151–2160. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, X.; Terashima, C.; Fujishima, A.; Nakata, K. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Phys. Chem. Chem. Phys. 2014, 16, 8751–8760. [Google Scholar] [CrossRef]
- Roy, P.; Berger, S.; Schmuki, P. TiO2 nanotubes: Synthesis and applications. Angew. Chem.-Int. Ed. 2011, 50, 2904–2939. [Google Scholar] [CrossRef]
- Hoseinzadeh, T.; Ghorannevis, Z.; Ghoranneviss, M.; Sari, A.H.; Salem, M.K. Effects of various applied voltages on physical properties of TiO2 nanotubes by anodization method. J. Theor. Appl. Phys. 2017, 11, 243–248. [Google Scholar] [CrossRef]
- Kment, S.; Kmentova, H.; Kluson, P.; Krysa, J.; Hubicka, Z.; Cirkva, V.; Gregora, I.; Solcova, O.; Jastrabik, L. Notes on the photo-induced characteristics of transition metal-doped and undoped titanium dioxide thin films. J. Colloid Interface Sci. 2010, 348, 198–205. [Google Scholar] [CrossRef]
- Cao, D.; Wang, Y.; Zhao, X. Combination of photocatalytic and electrochemical degradation of organic pollutants from water. Curr. Opin. Green Sustain. Chem. 2017, 6, 78–84. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez, E.C.R. Photoelectrocatalytic Degradation of C.I. Basic Blue 9 in Water under UV and Visible Light Illumination Using Copper/Sulfur Co-Doped Titanium Dioxide Nanotubes. Eng. Proc. 2023, 37, 51. https://doi.org/10.3390/ECP2023-14637
Lopez ECR. Photoelectrocatalytic Degradation of C.I. Basic Blue 9 in Water under UV and Visible Light Illumination Using Copper/Sulfur Co-Doped Titanium Dioxide Nanotubes. Engineering Proceedings. 2023; 37(1):51. https://doi.org/10.3390/ECP2023-14637
Chicago/Turabian StyleLopez, Edgar Clyde R. 2023. "Photoelectrocatalytic Degradation of C.I. Basic Blue 9 in Water under UV and Visible Light Illumination Using Copper/Sulfur Co-Doped Titanium Dioxide Nanotubes" Engineering Proceedings 37, no. 1: 51. https://doi.org/10.3390/ECP2023-14637