Using the STEGO Neural Network for Scintigraphic Image Analysis †
Abstract
:1. Introduction
1.1. Artificial Intelligence and It’s Applications
1.2. Scintigraphy
1.3. Machine Learning Usage in Scintigraphy
2. Dataset
3. Implementation of STEGO for Scintigraphic Image Analysis
4. Quality Metrics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- West, D.M.; Allen, J.R. How Artificial Intelligence Is Transforming the World. Report. Available online: Https://www.brookings.edu/research/how-artificial-intelligence-is-transforming-the-world/ (accessed on 14 July 2022).
- Notghi, A.; Low, C. Myocardial perfusion scintigraphy: Past, present and future. Br. J. Radiol. 2011, 84, S229–S236. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Pi, Y.; Jiang, L.; Xiang, Y.; Wei, J.; Yang, P.; Zhang, W.; Zhong, X.; Zhou, K.; Li, Y.; et al. Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis. Sci. Rep. 2020, 10, 17046. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Nakayama, M.; Nomura, K.; Tomita, Y.; Nakajima, K.; Yamashina, M.; Okizaki, A. The utility of a deep learning-based algorithm for bone scintigraphy in patient with prostate cancer. Ann. Nucl. 2020, 34, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Papandrianos, N.; Papageorgiou, E.; Anagnostis, A.; Feleki, A. A Deep-Learning Approach for Diagnosis of Metastatic Breast Cancer in Bones from Whole-Body Scans. Appl. Sci. 2020, 10, 997. [Google Scholar] [CrossRef]
- Islam, M.A.; Kowal, M.; Jia, S.; Derpanis, K.G.; Bruce, N.D.B. Position, padding and predictions: A deeper look at position information in cnns. arXiv 2021, arXiv:2101.12322. [Google Scholar]
- Lukašajn, L.L.; Kononenko, I. Image Segmentation and Parameterization for Automatic Diagnostics of Whole-Body Scintigrams: Basic Concepts; Chapman & Hall: London, UK, 2008. [Google Scholar]
- Chiu, J.S.; Wang, Y.F.; Su, Y.C.; Wei, L.H.; Liao, J.G.; Li, Y.C. Artificial neural network to predict skeletal metastasis in patients with prostate cancer. J. Med. Syst. 2009, 33, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Moustakidis, S.; Siouras, A.; Papandrianos, N.; Ntakolia, C.; Papageorgiou, E. Deep Learning for Bone Metastasis Localisation in Nuclear Imaging data of Breast Cancer Patients. In Proceedings of the IISA 2021—12th International Conference on Information, Intelligence, Systems and Applications, Chania Crete, Greece, 12–14 July 2021. [Google Scholar]
- Hamilton, M.; Zhang, Z.; Hariharan, B.; Snavely, N.; Freeman, W.T. Unsupervised Semantic Segmentation by Distilling Feature Correspondences. arXiv 2022, arXiv:2203.08414. [Google Scholar]
- Dang, T.; Nguyen, T.T.; McCall, J.; Elyan, E.; Moreno-García, C.F. Two layer Ensemble of Deep Learning Models for Medical Image Segmentation. arXiv 2021, arXiv:2104.04809. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulitin, I.; Barulina, M.; Velikanova, M. Using the STEGO Neural Network for Scintigraphic Image Analysis. Eng. Proc. 2023, 33, 5. https://doi.org/10.3390/engproc2023033005
Ulitin I, Barulina M, Velikanova M. Using the STEGO Neural Network for Scintigraphic Image Analysis. Engineering Proceedings. 2023; 33(1):5. https://doi.org/10.3390/engproc2023033005
Chicago/Turabian StyleUlitin, Ivan, Marina Barulina, and Marina Velikanova. 2023. "Using the STEGO Neural Network for Scintigraphic Image Analysis" Engineering Proceedings 33, no. 1: 5. https://doi.org/10.3390/engproc2023033005