Combination of Coagulation-Flocculation-Decantation with Sulfate Radicals for Agro-Industrial Wastewater Treatment †
Abstract
:1. Introduction
2. Material and Methods
2.1. Reagents
2.2. Analytical Techniques
2.3. Coagulation–Flocculation-Decantation Set-Up
2.4. Sulfate Radical Oxidation Set-Up
2.5. Statistical Analysis
3. Results and Discussion
3.1. Box–Behnken Design
3.2. Combination of Coagulation–Flocculation–Decantation and Oxidation Processes
4. Conclusions
- With the optimization performed by the Box–Behnken design, a TOC and COD removal of 19.7 and 31.2%, respectively, is achieved;
- The application of the CFD process to WW1 and WW2 achieves high levels of removal of turbidity, TSS and total polyphenols;
- The combination of CFD–oxidation processes achieves a high TOC and COD removal for the treatment of WW2 (51.2 and 73.3%, respectively).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jorge, N.; Teixeira, A.R.; Matos, C.C.; Lucas, M.S.; Peres, J.A. Combination of Coagulation−Flocculation−Decantation and Ozonation Processes for Winery Wastewater Treatment. Int. J. Environ. Res. Public Health 2021, 18, 8882. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, L.A.; Puma, G.L.; Fatta-Kassinos, D. Treatment of Winery Wastewater by Physicochemical, Biological and Advanced Processes: A Review. J. Hazard. Mater. 2015, 286, 343–368. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Application of Coagulation/Flocculation in Oily Wastewater Treatment: A Review. Sci. Total Environ. 2021, 765, 142795. [Google Scholar] [CrossRef] [PubMed]
- Giannakis, S.; Lin, K.A.; Ghanbari, F. A Review of the Recent Advances on the Treatment of Industrial Wastewaters by Sulfate Radical-Based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Ike, I.A.; Foster, S.L.; Shinn, S.R.; Watson, S.T.; Orbell, J.D.; Greenlee, L.F.; Duke, M.C. Advanced Oxidation of Orange G Using Phosphonic Acid Stabilised Zerovalent Iron. J. Environ. Chem. Eng. 2017, 5, 4014–4023. [Google Scholar] [CrossRef]
- Qi, C.; Liu, X.; Ma, J.; Lin, C.; Li, X.; Zhang, H. Activation of Peroxymonosulfate by Base: Implications for the Degradation of Organic Pollutants. Chemosphere 2016, 151, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Zhi, D.; Lin, Y.; Jiang, L.; Zhou, Y.; Huang, A.; Yang, J.; Luo, L. Remediation of Persistent Organic Pollutants in Aqueous Systems by Electrochemical Activation of Persulfates: A Review. J. Environ. Manage. 2020, 260, 110125. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Bruton, T.A.; Li, W.; Van Buren, J.; Prasse, C.; Doyle, F.M.; Sedlak, D.L. Oxidation of Benzene by Persulfate in the Presence of Fe (III)-and Mn (IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products. Environ. Sci. Technol. 2016, 50, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Jaafarzadeh, N.; Ghanbari, F.; Alvandi, M. Integration of Coagulation and Electro-Activated HSO5− to Treat Pulp and Paper Wastewater. Sustain. Environ. Res. 2017, 27, 223–229. [Google Scholar] [CrossRef]
Parameter | Winery Wastewater | |
---|---|---|
WW1 | WW2 | |
pH | 3.74 ± 0.04 | 3.84 ± 0.04 |
Conductivity (µS/cm) | 238 ± 3.4 | 245 ± 2.9 |
Turbidity (NTU) | 327 ± 4 | 643 ± 7 |
Total suspended solids (mg/L) | 779 ± 15 | 1559 ± 36 |
Chemical oxygen demand (mg O2/L) | 1119 ± 24 | 4640 ± 82 |
Biochemical oxygen demand (mg O2/L) | 588 ± 21 | 1813 ± 45 |
Total organic carbon (mg C/L) | 464 ± 4 | 997 ± 9 |
Total polyphenols (mg gallic acid/L) | 22.5 ± 1.4 | 42.9 ± 2.6 |
Ferrous iron (mg Fe/L) | 0.10 ± 0.02 | 0.10 ± 0.02 |
Biodegradability index—BOD5/COD | 0.53 ± 0.04 | 0.39 ± 0.03 |
Parameters | Code | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
[SPS] mM | X1 | 15 | 45 | 75 |
[Fe2+] mM | X2 | 0.25 | 1.00 | 1.75 |
[HA] mM | X3 | 0.00 | 4.38 | 8.75 |
Assay | Coded Level | TOC Removal | COD Removal | ||||
---|---|---|---|---|---|---|---|
X1 | X2 | X3 | Observed | Predicted | Observed | Predicted | |
SR-1 | 45 | 1.75 | 8.75 | 25.5 | 25.8 | 44.0 | 42.6 |
SR-2 | 75 | 0.25 | 4.38 | 1.0 | 0.0 | 38.0 | 34.0 |
SR-3 | 15 | 0.25 | 4.38 | 2.8 | 2.5 | 28.0 | 27.3 |
SR-4 | 45 | 0.25 | 0.00 | 31.6 | 31.4 | 40.0 | 41.4 |
SR-5 | 45 | 1.75 | 0.00 | 29.1 | 27.3 | 44.0 | 40.6 |
SR-6 a | 45 | 1.00 | 4.38 | 27.2 | 20.0 | 47.0 | 42.3 |
SR-7 | 75 | 1.00 | 8.75 | 4.9 | 4.4 | 36.0 | 36.6 |
SR-8 | 15 | 1.00 | 8.75 | 4.7 | 3.1 | 28.0 | 25.4 |
SR-9 | 45 | 0.25 | 8.75 | 0.5 | 2.3 | 19.0 | 22.4 |
SR-10 | 75 | 1.00 | 0.00 | 21.2 | 22.7 | 41.0 | 43.6 |
SR-11 a | 45 | 1.00 | 4.38 | 18.0 | 20.0 | 40.0 | 42.3 |
SR-12 | 15 | 1.75 | 4.38 | 3.8 | 5.1 | 30.0 | 34.0 |
SR-13 a | 45 | 1.00 | 4.38 | 15.0 | 20.0 | 40.0 | 42.3 |
SR-14 | 75 | 1.75 | 4.38 | 16.1 | 16.4 | 46.0 | 46.8 |
SR-15 | 15 | 1.00 | 0.00 | 14.8 | 15.4 | 36.0 | 35.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jorge, N.; Amor, C.; Teixeira, A.R.; Marchão, L.; Lucas, M.S.; Peres, J.A. Combination of Coagulation-Flocculation-Decantation with Sulfate Radicals for Agro-Industrial Wastewater Treatment. Eng. Proc. 2022, 19, 19. https://doi.org/10.3390/ECP2022-12610
Jorge N, Amor C, Teixeira AR, Marchão L, Lucas MS, Peres JA. Combination of Coagulation-Flocculation-Decantation with Sulfate Radicals for Agro-Industrial Wastewater Treatment. Engineering Proceedings. 2022; 19(1):19. https://doi.org/10.3390/ECP2022-12610
Chicago/Turabian StyleJorge, Nuno, Carlos Amor, Ana R. Teixeira, Leonilde Marchão, Marco S. Lucas, and José A. Peres. 2022. "Combination of Coagulation-Flocculation-Decantation with Sulfate Radicals for Agro-Industrial Wastewater Treatment" Engineering Proceedings 19, no. 1: 19. https://doi.org/10.3390/ECP2022-12610