Development and Application of Self-Sensing Materials for Structural Health Monitoring of Civil Engineering Infrastructures †
Abstract
1. Introduction
2. Experimental Investigation
2.1. Material and Mix Design
2.2. Dispersion of MWCNTs
2.3. Preparation of Specimens
2.4. Electrical Measurements
2.5. Experimental Results
3. Analytical Investigation
3.1. A Brief Outline of the Micromechanical Model
3.2. Analytical Predictions and Comparison with Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassani, S.; Mousavi, M.; Gandomi, A.H. Structural Health Monitoring in Composite Structures: A Comprehensive Review. Sensors 2022, 22, 153. [Google Scholar] [CrossRef]
- Aktan, E.; Bartoli, I.; Glišić, B.; Rainieri, C. Lessons from Bridge Structural Health Monitoring (SHM) and Their Implications for the Development of Cyber-Physical Systems. Infrastructures 2024, 9, 30. [Google Scholar] [CrossRef]
- Lee, S.-J.; You, I.; Zi, G.; Yoo, D.-Y. Experimental Investigation of the Piezoresistive Properties of Cement Composites with Hybrid Carbon Fibers and Nanotubes. Sensors 2017, 17, 2516. [Google Scholar] [CrossRef] [PubMed]
- Ghahremani, B.; Enshaeian, A.; Rizzo, P. Bridge Health Monitoring Using Strain Data and High-Fidelity Finite Element Analysis. Sensors 2022, 22, 5172. [Google Scholar] [CrossRef] [PubMed]
- Barrias, A.; Casas, J.R.; Villalba, S. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications. Sensors 2016, 16, 748. [Google Scholar] [CrossRef]
- Mardanshahi, A.; Sreekumar, A.; Yang, X.; Barman, S.K.; Chronopoulos, D. Sensing Techniques for Structural Health Monitoring: A State-of-the-Art Review on Performance Criteria and New-Generation Technologies. Sensors 2025, 25, 1424. [Google Scholar] [CrossRef]
- Taheri, S. A Review on Five Key Sensors for Monitoring of Concrete Structures. Constr. Build. Mater. 2019, 204, 492–509. [Google Scholar] [CrossRef]
- Rizzo, P.; Enshaeian, A. Challenges in Bridge Health Monitoring: A Review. Sensors 2021, 21, 4336. [Google Scholar] [CrossRef]
- Ferreira, A.D.B.; Nóvoa, P.R.; Marques, A.T. Multifunctional Material Systems: A State-of-the-Art Review. Compos. Struct. 2016, 151, 3–35. [Google Scholar] [CrossRef]
- Ha, G.-J.; Cho, C.-G.; Kang, H.-W.; Feo, L. Seismic Improvement of RC Beam–Column Joints Using Hexagonal CFRP Bars Combined with CFRP Sheets. Compos. Struct. 2013, 95, 464–470. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Lee, B.Y.; Bang, J.-W.; Han, B.-C.; Feo, L.; Cho, C.-G. Flexural Performance of Reinforced Concrete Beams Strengthened with Strain-Hardening Cementitious Composite and High Strength Reinforcing Steel Bar. Compos. Part B Eng. 2014, 56, 512–519. [Google Scholar] [CrossRef]
- Feo, L.; Ascione, F.; Penna, R.; Lau, D.; Lamberti, M. An Experimental Investigation on Freezing and Thawing Durability of High-Performance Fiber Reinforced Concrete (HPFRC). Compos. Struct. 2020, 234, 111673. [Google Scholar] [CrossRef]
- Martinelli, E.; Pepe, M.; Penna, R.; Feo, L. A Cracked-Hinge Approach to Modelling High Performance Fiber-Reinforced Concrete. Compos. Struct. 2021, 273, 114277. [Google Scholar] [CrossRef]
- Penna, R.; Feo, L.; Martinelli, E.; Pepe, M. Theoretical Modelling of the Degradation Processes Induced by Freeze–Thaw Cycles on Bond-Slip Laws of Fibres in High-Performance Fibre-Reinforced Concrete. Materials 2022, 15, 6122. [Google Scholar] [CrossRef] [PubMed]
- Feo, L.; Lambiase, A.; Martinelli, E.; Penna, R.; Pepe, M. On the Effect of Carbon Nanotubes in Ultra-High Performance Fiber Reinforced Concrete. Procedia Struct. Integr. 2023, 47, 800–811. [Google Scholar] [CrossRef]
- Tian, Z.; Li, Y.; Zheng, J.; Wang, S. A State-of-the-Art on Self-Sensing Concrete: Materials, Fabrication and Properties. Compos. Part B Eng. 2019, 177, 107437. [Google Scholar] [CrossRef]
- Chung, D.D.L. Self-Sensing Concrete: From Resistance-Based Sensing to Capacitance-Based Sensing. Int. J. Smart Nano Mater. 2020, 11, 1–19. [Google Scholar] [CrossRef]
- Han, B.G.; Wang, Y.Y.; Dong, S.F.; Zhang, L.; Ding, S.; Yu, X.; Ou, J. Smart Concretes and Structures: A Review. J. Intell. Mater. Syst. Struct. 2015, 26, 1303–1345. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L. Development of Self-Sensing Cementitious Composite Incorporating Hybrid Graphene Nanoplates and Carbon Nanotubes for Structural Health Monitoring. Sens. Actuators A Phys. 2022, 336, 113367. [Google Scholar] [CrossRef]
- Yu, X.; Kwon, E. A Carbon Nanotube/Cement Composite with Piezoresistive Properties. Smart Mater. Struct. 2009, 18, 055010. [Google Scholar] [CrossRef]
- Han, B.; Ding, S.; Yu, X. Intrinsic Self-Sensing Concrete and Structures: A Review. Measurement 2015, 59, 110–128. [Google Scholar] [CrossRef]
- An, S.H.; Kim, K.Y.; Lee, J.U. Reinforcement of Cement Nanocomposites through Optimization of Mixing Ratio between Carbon Nanotube and Polymer Dispersing Agent. Polymers 2024, 16, 428. [Google Scholar] [CrossRef]
- de Almeida Carísio, P.; dos Santos Mendonça, Y.G.; Soares, C.F.T.; Reales, O.A.M.; de Moraes Rego Fairbairn, E.; Filho, R.D.T. Dispersion of Carbon Nanotubes with Different Types of Superplasticizer as a Dispersing Agent for Self-Sensing Cementitious Materials. Appl. Sci. 2021, 11, 8452. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Highly Dispersed Carbon Nanotube Reinforced Cement Based Materials. Cem. Concr. Res. 2010, 40, 1052–1059. [Google Scholar] [CrossRef]
- Deng, F.; Zheng, Q.S. An Analytical Model of Effective Electrical Conductivity of Carbon Nanotube Composites. Appl. Phys. Lett. 2008, 92, 071902. [Google Scholar] [CrossRef]
- Takeda, T.; Shindo, Y.; Kuronuma, Y.; Narita, F. Modeling and Characterization of the Electrical Conductivity of Carbon Nanotube-Based Polymer Composites. Polymer 2011, 52, 3852–3856. [Google Scholar] [CrossRef]
- Seidel, G.D.; Lagoudas, D.C. A Micromechanics Model for the Electrical Conductivity of Nanotube–Polymer Nanocomposites. J. Compos. Mater. 2009, 43, 917–941. [Google Scholar] [CrossRef]
- Feng, C.; Jiang, L. Micromechanics Modeling of the Electrical Conductivity of Carbon Nanotube–Polymer Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2013, 47, 143–149. [Google Scholar] [CrossRef]
- Alamusi; Hu, N. Numerical Simulations on Piezoresistivity of CNT/Polymer Based Nanocomposites. Comput. Mater. Contin. 2010, 20, 101–118. [Google Scholar]
- García-Macías, E.; D’Alessandro, A.; Castro-Triguero, R.; Pérez-Mira, D.; Ubertini, F. Micromechanics Modeling of the Uniaxial Strain-Sensing Property of Carbon Nanotube Cement-Matrix Composites for SHM Applications. Compos. Struct. 2017, 163, 195–215. [Google Scholar] [CrossRef]
- García-Macías, E.; D’Alessandro, A.; Castro-Triguero, R.; Pérez-Mira, D.; Ubertini, F. Micromechanics Modeling of the Electrical Conductivity of Carbon Nanotube Cement-Matrix Composites. Compos. Part B Eng. 2017, 108, 451–469. [Google Scholar] [CrossRef]
- Penna, R.; Landi, G.; Lovisi, G.; Lambiase, A.; Feo, L. Micromechanical Modeling of the Piezoelectric Behavior of CNT Cement-Matrix Composites. Compos. Part B Eng. 2025, 306, 112810. [Google Scholar] [CrossRef]
- Heidelberg Materials. Available online: https://www.heidelbergmaterials.it (accessed on 23 June 2025).
- Sodium Laurylsulfate, Carlo Erba Reagents. CAS No. 151-21-3. Available online: https://www.carloerbareagents.com (accessed on 23 June 2025).
- AsItaly Advanced Scientific. Available online: https://www.asitaly.it (accessed on 23 June 2025).
- Xie, P.; Gu, P.; Beaudoin, J.J. Electrical Percolation Phenomena in Cement Composites Containing Conductive Fibres. J. Mater. Sci. 1996, 31, 4093–4097. [Google Scholar] [CrossRef]
- Kim, Y.J.; Shin, T.S.; Choi, H.D.; Kwon, J.H.; Chung, Y.C.; Yoon, H.G. Electrical Conductivity of Chemically Modified Multiwalled Carbon Nanotube/Epoxy Composites. Carbon 2005, 43, 23–37. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Ubertini, F.; Materazzi, A.L. Self-Sensing Concrete Nanocomposites for Smart Structures. Int. J. Archit. Civ. Constr. Sci. 2016, 10, 599–604. [Google Scholar]
- Naeem, F.; Lee, H.K.; Kim, H.K.; Nam, I.W. Flexural Stress and Crack Sensing Capabilities of MWNT/Cement Composites. Compos. Struct. 2017, 175, 86–100. [Google Scholar] [CrossRef]
- Jiang, S.; Zhou, D.; Zhang, L.; Ouyang, J.; Yu, X.; Cui, X.; Han, B. Comparison of Compressive Strength and Electrical Resistivity of Cementitious Composites with Different Nano- and Micro-Fillers. Arch. Civ. Mech. Eng. 2018, 18, 60–68. [Google Scholar] [CrossRef]
- del Moral, B.; Baeza, F.J.; Navarro, R.; Galao, O.; Zornoza, E.; Vera, J.; Farcas, C.; Garcés, P. Temperature and Humidity Influence on the Strain Sensing Performance of Hybrid Carbon Nanotubes and Graphite Cement Composites. Constr. Build. Mater. 2021, 284, 122786. [Google Scholar] [CrossRef]
- Sobolkina, A.; Mechtcherine, V.; Khavrus, V.; Maier, D.; Mende, M.; Ritschel, M.; Leonhardt, A. Dispersion of Carbon Nanotubes and Its Influence on the Mechanical Properties of the Cement Matrix. Cem. Concr. Compos. 2012, 34, 1104–1113. [Google Scholar] [CrossRef]
- Szeląg, M. Mechano-Physical Properties and Microstructure of Carbon Nanotube Reinforced Cement Paste after Thermal Load. Nanomaterials 2017, 7, 267. [Google Scholar] [CrossRef]
- Xing, G.; Xu, Y.; Zhao, Z.; Chen, S. Piezoresistive Properties of Well-Dispersed Carbon Nanotubes (CNTs) Modified Cement Paste. J. Build. Eng. 2024, 95, 110364. [Google Scholar] [CrossRef]
- Meoni, A.; D’Alessandro, A.; Downey, A.; García-Macías, E.; Rallini, M.; Materazzi, A.L.; Torre, L.; Laflamme, S.; Castro-Triguero, R.; Ubertini, F. An Experimental Study on Static and Dynamic Strain Sensitivity of Embeddable Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures. Sensors 2018, 18, 831. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Purity | >90% in weight |
Ash content | <1.5% in weight |
Length | 10–30 μm |
Outer mean diameter | 10–30 nm |
Inner mean diameter | 5–10 nm |
Specific surface area | >200 m2/g |
Bulk density | 0.06 g/cm3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penna, R.; Lambiase, A.; Landi, G.; Lovisi, G.; Feo, L. Development and Application of Self-Sensing Materials for Structural Health Monitoring of Civil Engineering Infrastructures. Eng. Proc. 2025, 112, 16. https://doi.org/10.3390/engproc2025112016
Penna R, Lambiase A, Landi G, Lovisi G, Feo L. Development and Application of Self-Sensing Materials for Structural Health Monitoring of Civil Engineering Infrastructures. Engineering Proceedings. 2025; 112(1):16. https://doi.org/10.3390/engproc2025112016
Chicago/Turabian StylePenna, Rosa, Annavirginia Lambiase, Gerarda Landi, Giuseppe Lovisi, and Luciano Feo. 2025. "Development and Application of Self-Sensing Materials for Structural Health Monitoring of Civil Engineering Infrastructures" Engineering Proceedings 112, no. 1: 16. https://doi.org/10.3390/engproc2025112016
APA StylePenna, R., Lambiase, A., Landi, G., Lovisi, G., & Feo, L. (2025). Development and Application of Self-Sensing Materials for Structural Health Monitoring of Civil Engineering Infrastructures. Engineering Proceedings, 112(1), 16. https://doi.org/10.3390/engproc2025112016