An Efficient Algorithm for Mining Top-k High-On-Shelf-Utility Itemsets with Positive/Negative Profits of Local/Global Minimum Count †
Abstract
1. Introduction
2. KOSHU Algorithm
3. TIPN-Table-Based Algorithm
3.1. Example Database
3.2. Definitions and Notations
3.3. Data Structures
3.4. Pruning Strategies
3.5. Threshold Increased Strategies
3.6. Mining Process
3.6.1. Preprocessing Step
3.6.2. Mining Step
4. Performance Evaluation
4.1. Performance Model
4.2. Experiment Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Singh, K.; Kumar, A.; Singh, S.S.; Shakya, H.K.; Biswas, B. EHNL: An efficient algorithm for mining high utility itemsets with negative utility value and length constraints. Inf. Sci. 2019, 484, 44–70. [Google Scholar] [CrossRef]
- Lee, J.; Yun, U.; Lee, G.; Yoon, E. Efficient incremental high utility pattern mining based on pre-large concept. Eng. Appl. Artif. Intell. 2018, 72, 111–123. [Google Scholar] [CrossRef]
- Singh, K.; Singh, S.S.; Kumar, A.; Biswas, B. TKEH: An efficient algorithm for mining top-k high utility itemsets. Appl. Intell. 2018, 49, 1078–1097. [Google Scholar] [CrossRef]
- Dam, T.-L.; Li, K.; Fournier-Viger, P.; Duong, Q.-H. An efficient algorithm for mining top-k on-shelf high utility itemsets. Knowl. Inf. Syst. 2017, 52, 621–655. [Google Scholar] [CrossRef]
- Krishnamoorthy, S. Mining top-k high utility itemsets with effective threshold raising strategies. Expert Syst. Appl. 2019, 117, 148–165. [Google Scholar] [CrossRef]
- Chen, J.; Guo, X.; Gan, W.; Chen, C.-M.; Ding, W.; Chen, G. On-shelf utility mining from transaction database. Eng. Appl. Artif. Intell. 2022, 107, 1–12. [Google Scholar] [CrossRef]
- Ashraf, M.; Abdelkader, T.; Rady, S.; Gharib, T.F. TKN: An efficient approach for discovering top-k high utility itemsets with positive or negative profits. Inf. Sci. 2022, 587, 654–678. [Google Scholar] [CrossRef]
- Fournier-Viger, P.; Lin, C.W.; Gomariz, A.; Gueniche, T.; Soltani, Z.D.A.; Lam, H.T. The SPMF open-source data mining library version 2. In Proceedings of the 19th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD 2016), Part III, Riva del Garda, Italy, 19–23 September 2016; Springer: Riva del Garda, Italy, 2016; pp. 36–40. [Google Scholar]
- IBM. IBM Quest Synthetic Data Generation Code. Available online: https://www.ibm.com/docs/en/watsonx/w-and-w/2.1.0?topic=data-generating-synthetic (accessed on 5 July 2025).
- Vo, B.; Bui, H.; Vo, T.; Le, T. Mining top-rank-k frequent weighted itemsets using WN-list structures and an early pruning strategy. Knowl.-Based Syst. 2020, 201–202, 1–12. [Google Scholar] [CrossRef]
TID | Transaction | Interval |
---|---|---|
T1 | (a,1)(b,2)(c,1) | 1 |
T2 | (c,3)(d,2) | 1 |
T3 | (b,2)(c,4)(d,3) | 2 |
T4 | (b,6)(d,2) | 2 |
TID | Transaction | Interval |
---|---|---|
T1 | (b,3)(d,2)(f,4) | 1 |
T2 | (b,2)(c,7)(d,4)(e,5) | 1 |
T3 | (a,6)(c,3)(d,4) | 2 |
T4 | (a,4)(d,2)(e,2) | 2 |
T5 | (b,3)(c,8)(d,5)(e,4) | 3 |
T6 | (b,1)(c,6)(d,3) | 3 |
Time Interval | TID | Positive Items | Positive Utility | Negative Items | Negative Count |
---|---|---|---|---|---|
1 | T1 | f | f:16 | b,d | b:3, d:2 |
T2 | c,e | c:21, e:10 | b,d | b:2, d:4 | |
2 | T3 | a,c | a:30, c:9 | d | d:4 |
T4 | a,e | a:20, e:4 | d | d:2 | |
3 | T5 | c,e | c:24, e:8 | b,d | b:3, d:5 |
T6 | c | c:18 | b,d | b:1, d:3 |
Itemset | Time Interval | TID | P_Util | N_Util | NLC_Util | R_Util |
---|---|---|---|---|---|---|
e | 1 | 2 | 10 | 0 | 0 | 15 |
2 | 4 | 4 | 0 | 0 | −2 | |
3 | 5 | 8 | 0 | 0 | 19 |
Time Interval | TID | Positive Items | Positive Utility | Negative Items | Negative Count |
---|---|---|---|---|---|
1 | T1 | f | f:16 | b,d | b:3, d:2 |
T2 | e,c | c:21, e:10 | b,d | b:2, d:4 | |
2 | T3 | a,c | a:30, c:9 | d | d:4 |
T4 | a,e | a:20, e:4 | d | d:2 | |
3 | T5 | e,c | c:24, e:8 | b,d | b:3, d:5 |
T6 | c | c:18 | b,d | b:1, d:3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.-I.; Chuang, P.-C.; Liao, Y.-H.; Hu, P.-Y.; Chen, T.-W. An Efficient Algorithm for Mining Top-k High-On-Shelf-Utility Itemsets with Positive/Negative Profits of Local/Global Minimum Count. Eng. Proc. 2025, 108, 45. https://doi.org/10.3390/engproc2025108045
Chang Y-I, Chuang P-C, Liao Y-H, Hu P-Y, Chen T-W. An Efficient Algorithm for Mining Top-k High-On-Shelf-Utility Itemsets with Positive/Negative Profits of Local/Global Minimum Count. Engineering Proceedings. 2025; 108(1):45. https://doi.org/10.3390/engproc2025108045
Chicago/Turabian StyleChang, Ye-In, Po-Chun Chuang, Yu-Hao Liao, Po-Yu Hu, and Ting-Wei Chen. 2025. "An Efficient Algorithm for Mining Top-k High-On-Shelf-Utility Itemsets with Positive/Negative Profits of Local/Global Minimum Count" Engineering Proceedings 108, no. 1: 45. https://doi.org/10.3390/engproc2025108045
APA StyleChang, Y.-I., Chuang, P.-C., Liao, Y.-H., Hu, P.-Y., & Chen, T.-W. (2025). An Efficient Algorithm for Mining Top-k High-On-Shelf-Utility Itemsets with Positive/Negative Profits of Local/Global Minimum Count. Engineering Proceedings, 108(1), 45. https://doi.org/10.3390/engproc2025108045