Evaluating the Role of Machine Learning in Migraine Detection and Classification †
Abstract
1. Introduction
1.1. Types of Migraine
1.1.1. Migraine Without Aura (Common Migraine)
1.1.2. Migraine with Aura (Classic Migraine)
1.1.3. Sporadic Hemiplegic Migraine
1.1.4. Familial Hemiplegic Migraine
2. Literature Review
3. Methodology
3.1. Support Vector Machine
3.2. Random Forest
3.3. Decision Tree
3.4. XGBoost
3.5. Vote
3.6. Framework
3.6.1. Data Collection
3.6.2. Replace Missing Values
3.6.3. Split Data
3.6.4. SMOTE
3.6.5. Principal Component Analysis
3.6.6. Optimize Selection
3.6.7. Principal Component Analysis
4. Result
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, L.; Shahreen, M.; Qazi, A.; Shah, S.J.A.; Hussain, S.; Chang, H.T. Migraine Headache (MH) Classification Using Machine Learning Methods with Data Augmentation. Sci. Rep. 2024, 14, 5180. [Google Scholar] [CrossRef] [PubMed]
- Torrente, A.; Maccora, S.; Prinzi, F.; Alonge, P.; Pilati, L.; Lupica, A.; Di Stefano, V.; Camarda, C.; Vitabile, S.; Brighina, F. The Clinical Relevance of Artificial Intelligence in Migraine. Brain Sci. 2024, 14, 85. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, T.; Kunal, C. Migraine Prediction Method Using Feature Selection with Hybrid Optimization Method. In Proceedings of the 2024 1st International Conference on Innovations in Communications, Electrical and Computer Engineering (ICICEC), Davangere, India, 24–25 October 2024; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar] [CrossRef]
- Aramruang, T.; Malhotra, A.; Numthavaj, P.; Looareesuwan, P.; Anothaisintawee, T.; Dejthevaporn, C.; Sirirutbunkajorn, N.; Attia, J.; Thakkinstian, A. Prediction Models for Identifying Medication Overuse or Medication Overuse Headache in Migraine Patients: A Systematic Review. J. Headache Pain 2024, 25, 165. [Google Scholar] [CrossRef] [PubMed]
- Mitrović, K.; Savić, A.M.; Radojičić, A.; Đaković, M.; Petrušić, I. Machine Learning Approach for Migraine Aura Complexity Score Prediction Based on Magnetic Resonance Imaging Data. J. Headache Pain 2023, 24, 169. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, D.; Pocora, M.M.; De Icco, R.; Allena, M.; Vaghi, G.; Sances, G.; Castellazzi, G.; Tassorelli, C. Searching for the Predictors of Response to BoNT-A in Migraine Using Machine Learning Approaches. Toxins 2023, 15, 364. [Google Scholar] [CrossRef] [PubMed]
- Stubberud, A.; Langseth, H.; Nachev, P.; Matharu, M.S.; Tronvik, E. Artificial Intelligence and Headache. Cephalalgia 2024, 44, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Saif, Z.B.; Sakib, N.; Adnan, M. Exploring the Prevalence and Triggering Factors of Migraine in University Students of Bangladesh Using Machine Learning. Ph.D. Thesis, Department of Electrical and Electronic Engineering (EEE), Islamic University of Technology (IUT), Gazipur, Bangladesh, 2023. Available online: http://repository.iutoic-dhaka.edu:8080/server/api/core/bitstreams/5ff7c41e-e81d-47fe-8b15-ac4085250e3c/content (accessed on 17 February 2025).
- Zhu, B.; Coppola, G.; Shoaran, M. Migraine Classification Using Somatosensory Evoked Potentials. Cephalalgia 2019, 39, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Seah, N. Predicting Stroke Risk in Migraine Patients Using AI. Master’s Thesis, Arizona State University, Tempe Campus, Tempe, AZ, USA, 2024. Available online: https://www.proquest.com/openview/669fe03902483e894ad0fddde3994194/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 10 February 2025).
- Diwaker, C.; Tomar, P.; Solanki, A.; Nayyar, A.; Jhanjhi, N.Z.; Abdullah, A.; Supramaniam, M. A New Model for Predicting Component-Based Software Reliability Using Soft Computing. IEEE Access 2019, 7, 147191–147203. [Google Scholar] [CrossRef]
- Kok, S.H.; Abdullah, A.; Jhanjhi, N.Z.; Supramaniam, M. A Review of Intrusion Detection System Using Machine Learning Approach. Int. J. Eng. Res. Technol. 2019, 12, 8–15. [Google Scholar]
- Airehrour, D.; Gutierrez, J.; Ray, S.K. GradeTrust: A Secure Trust Based Routing Protocol for MANETs. In Proceedings of the 25th International Telecommunication Networks and Applications Conference (ITNAC), Sydney, Australia, 18–20 November 2015; pp. 65–70. [Google Scholar] [CrossRef]
- Rehman, A.U.; Butt, W.H.; Ali, T.M.; Javaid, S.; Almufareh, M.F.; Humayun, M.; Rahman, H.; Mir, A.; Shaheen, M. A Machine Learning-Based Framework for Accurate and Early Diagnosis of Liver Diseases: A Comprehensive Study on Feature Selection, Data Imbalance, and Algorithmic Performance. Int. J. Intell. Syst. 2024, 2024, 29. [Google Scholar] [CrossRef]
Sr | Parameters | Specified Values |
---|---|---|
1 | SVM Type | C-SVC |
2 | Kernel Type | Polynomial |
3 | Degree (d) | 2 or 3 |
4 | Auto or 1.0 | |
5 | C (Regularization) | 1.0 or (0.1–100) |
6 | Coef() | 0.0 |
7 | Epsilon() | 0.001 |
8 | Scaling | Yes (Z-score Normalization) |
Sr | Parameters | Specified Values |
---|---|---|
1 | Criteria | Gini or Entrophy |
2 | Max depth | auto |
3 | Min Samples Split 2 | 2 |
4 | Min Samples Leaf | 1 |
5 | Max Features | 4.80 |
6 | Number of trees | 100 |
7 | Bootstrap | True |
Sr | Parameters | Specified Values |
---|---|---|
1 | Criteria | Gini or Entrophy |
2 | Max depth | auto |
3 | Min Samples Split 2 | 1 |
4 | Min Samples Leaf | 1 |
5 | Max Features | all |
6 | Number of trees | N/A |
7 | Bootstrap | N/A |
Sr | Parameters | Specified Values |
---|---|---|
1 | n_estimator | 100–1000 |
2 | Learning rate | 0.01–0.3 |
3 | Max depth | 3–10 |
4 | Min Child Weight | 1–10 |
5 | Subsample | 0.5–1.0 |
6 | Colsample by tree | 0.5–1.0 |
7 | Gamma | 0–5 |
8 | Reg_alpha | 0–1 |
9 | Reg_lambda | 0–10 |
10 | Objektif | “binary:logistic”, “multi:softmax” |
11 | Eval_metric | “logloss”, “mlogloss”, “AUC-ROC” |
Attribute 1 | Attribute 2 | Attribute 3 | Attribute 4 |
---|---|---|---|
Age | Duration | Frequency | Location |
Character | Nausea | Intensity | Vomit |
Phonophobia | Photopobia | Visual | Sensory |
Dysphasia | Dysarthria | Vertigo | Timnitus |
Hyperacusis | Diplopia | Defect | Ataxia |
Conscience | Paresthesia | DFP | Type |
Cite | Year | Author | Classifier | Accuracy |
---|---|---|---|---|
[1] | 2024 | Khan L | DNN | 99.66% |
[2] | 2024 | Torrente A | L-Based Model | 97% |
[3] | 2024 | Choudary T | RF | 99.63% |
[4] | 2024 | Aramruang | SVM | 0.84% |
[5] | 2023 | Mitrovic’ | ML Model | 82% |
[6] | 2023 | Martinelli D | RF | 85.71% |
[7] | 2024 | Stubberud A | ML Model | 60–90% |
[8] | 2023 | Saif Z | RF | 85.3% |
[9] | 2019 | Zhu B | XGB | 88% |
[10] | 2024 | Seah N | DL | 0.67% |
Sr | Classifier | Accuracy | Error | Recall | Precision |
---|---|---|---|---|---|
1 | SVM | 92.06% | 7.94% | 87.48% | 91.82% |
2 | Decision Tree (DT) | 74.79% | 25.21% | 30.18% | 26.04% |
3 | Random Forest (RF) | 91.01% | 8.99% | 83.78% | 80.49% |
4 | XGBoost | 86.77% | 13.23% | 72.01% | 63.13% |
5 | Voting Ensemble (NeuroVote) | 99.99% | 0.01% | 99.97% | 99.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imtiaz, I.; Afzal, H.; Rehman, A.U.; Insany, G.P. Evaluating the Role of Machine Learning in Migraine Detection and Classification. Eng. Proc. 2025, 107, 122. https://doi.org/10.3390/engproc2025107122
Imtiaz I, Afzal H, Rehman AU, Insany GP. Evaluating the Role of Machine Learning in Migraine Detection and Classification. Engineering Proceedings. 2025; 107(1):122. https://doi.org/10.3390/engproc2025107122
Chicago/Turabian StyleImtiaz, Irsa, Hamza Afzal, Attique Ur Rehman, and Gina Purnama Insany. 2025. "Evaluating the Role of Machine Learning in Migraine Detection and Classification" Engineering Proceedings 107, no. 1: 122. https://doi.org/10.3390/engproc2025107122
APA StyleImtiaz, I., Afzal, H., Rehman, A. U., & Insany, G. P. (2025). Evaluating the Role of Machine Learning in Migraine Detection and Classification. Engineering Proceedings, 107(1), 122. https://doi.org/10.3390/engproc2025107122