Milk Quality Detection Using Machine Learning †
Abstract
1. Introduction
2. Literature Review
3. Methodology
Dataset
4. Result
Accuracy of Machine Learning Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saravanan, S.; Kavinkumar, M.; Kokul, N.S.; Krishna, N.S.; Nitheeshkumar, V.I. Smart milk quality analysis and grading using IoT. In Proceedings of the IEEE 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 378–383. [Google Scholar]
- Goswami, S. Arduino-Based Milk Quality Monitoring System. Int. J. Agric. Environ. Biotechnol. 2021, 14, 245–249. [Google Scholar] [CrossRef]
- Ibrahim, T.; Wattoo, F.H.; Sarwar Wattoo, M.H.; Hamid, S. Assessment of Fresh Milk Quality Through Quality Parameters. Pak. J. Health Sci. 2023, 4, 21–25. [Google Scholar] [CrossRef]
- Rajakumar, G.; Kumar, T.A.; Samuel, T.A.; Kumaran, E.M. IoT based milk monitoring system for detection of milk adulteration. Int. J. Pure Appl. Math. 2018, 118, 21–32. [Google Scholar]
- Samad, A.; Taze, S.; Kürsad UÇAR, M. Enhancing Milk Quality Detection with Machine Learning: A Comparative Analysis of KNN and Distance-Weighted KNN Algorithms. Int. J. Innov. Sci. Res. Technol. 2024, 9, 2021–2029. [Google Scholar] [CrossRef]
- Bhavsar, D.; Jobanputra, Y.; Swain, N.K.; Swain, D. Milk Quality Prediction Using Machine Learning. EAI Endorsed Trans. Internet Things 2024, 10, 1–5. [Google Scholar] [CrossRef]
- Khenwar, M.; Vishnoi, S.; Sisodia, A. An Assessment of Milk Adulteration IoT Based Model to Identify the Quality of Milk using Lab View. In Proceedings of the 2022 11th International Conference on System Modeling & Advancement in Research Trends (SMART), Moradabad, India, 16–17 December 2022; pp. 868–873. [Google Scholar] [CrossRef]
- Ahmad, S.; Bader Ul Ain, H.; Tufail, T.; Maqsood, M.; Bibi, S.; Ahmad, B.; Ahmad, S.; Nasir, M.; Mushtaq, Z.; Shahadat Khan, R. Evaluating the Effect of Animal-Based Iron Sources on Iron Deficiency Anemia. Pak. Biomed. J. 2023, 5, 29–33. [Google Scholar] [CrossRef]
- Karmaker, A.; Das, P.C.; Iqbal, A. Quality assessment of different commercial and local milk available in the local markets of selected area of Bangladesh. J. Adv. Vet. Anim. Res. 2020, 7, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Drekalovic, N. Raw Milk Quality Monitoring System. In Proceedings of the 2021 10th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 7–10 June 2021. [Google Scholar] [CrossRef]
- Diwaker, C.; Tomar, P.; Solanki, A.; Nayyar, A.; Jhanjhi, N.Z.; Abdullah, A.; Supramaniam, M. A New Model for Predicting Component Based Software Reliability Using Soft Computing. IEEE Access 2019, 7, 147191–147203. [Google Scholar] [CrossRef]
- Mu, F.; Gu, Y.; Zhang, J.; Zhang, L. Milk source identification and milk quality estimation using an electronic nose and machine learning techniques. Sensors 2020, 20, 4238. [Google Scholar] [CrossRef] [PubMed]
- Airehrour, D.; Gutierrez, J.; Kumar Ray, S. GradeTrust: A secure trust based routing protocol for MANETs. In Proceedings of the 2015 International Telecommunication Networks and Applications Conference (ITNAC), Sydney, Australia, 18–20 November 2015; pp. 65–70. [Google Scholar] [CrossRef]
- Yalew, K.; Pang, X.; Huang, S.; Zhang, S.; Yang, X.; Xie, N.; Wang, Y.; Lv, J.; Li, X. Recent Development in Detection and Control of Psychrotrophic Bacteria in Dairy Production: Ensuring Milk Quality. Foods 2024, 13, 2908. [Google Scholar] [CrossRef] [PubMed]
- Sim, M.Y.M.; Shya, T.J.; Ahmad, M.N.; Shakaff, A.Y.M.; Othman, A.R.; Hitam, M.S. Monitoring of milk quality with disposable taste sensor. Sensors 2003, 3, 340–349. [Google Scholar] [CrossRef]
- Chaudhari, B.; Deshmukh, N.; Bagul, K.; Chaudhari, D.; Yeole, R. Milk Purity Detection System. YMER 2024, 23, 1179–1188. [Google Scholar]
- Lim, M.; Abdullah, A.; Jhanjhi, N.; Khurram Khan, M.; Supramaniam, M. Link prediction in time-evolving criminal network with deep reinforcement learning technique. IEEE Access 2019, 7, 184797–184807. [Google Scholar] [CrossRef]

| Low | Medium | High | |
|---|---|---|---|
| Low | 0 | 0 | 0 |
| Medium | 134 | 99.14% | 0 |
| High | 0 | 0 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahzad, A.; Javaid, S.; Alamsyah, Z. Milk Quality Detection Using Machine Learning. Eng. Proc. 2025, 107, 119. https://doi.org/10.3390/engproc2025107119
Shahzad A, Javaid S, Alamsyah Z. Milk Quality Detection Using Machine Learning. Engineering Proceedings. 2025; 107(1):119. https://doi.org/10.3390/engproc2025107119
Chicago/Turabian StyleShahzad, Atif, Sabeen Javaid, and Zaenal Alamsyah. 2025. "Milk Quality Detection Using Machine Learning" Engineering Proceedings 107, no. 1: 119. https://doi.org/10.3390/engproc2025107119
APA StyleShahzad, A., Javaid, S., & Alamsyah, Z. (2025). Milk Quality Detection Using Machine Learning. Engineering Proceedings, 107(1), 119. https://doi.org/10.3390/engproc2025107119
