Wireless Power Harvesting Skin †
Abstract
1. Introduction
1.1. Typical Wireless Power-Harvesting System
1.2. Antennas for Wireless Power Harvesting
1.3. Phased Arrays and Beamforming for Wireless Power Harvesting
2. System Description
3. Results and Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Surender, D.; Khan, T.; Talukdar, F.A.; De, A.; Antar, Y.M.M.; Freundorfer, A.P. Key Components of Rectenna System: A Comprehensive Survey. IETE J. Res. 2020, 68, 3379–3405. [Google Scholar] [CrossRef]
- Ullah, M.A.; Keshavarz, R.; Abolhasan, M.; Lipman, J.; Esselle, K.P.; Shariati, N. A Review on Antenna Technologies for Ambient RF Energy Harvesting and Wireless Power Transfer: Designs, Challenges and Applications. IEEE Access 2022, 10, 17231–17267. [Google Scholar] [CrossRef]
- Kanaujia, B.K.; Singh, N.; Kumar, S. Rectenna Implementation. In Rectenna: Wireless Energy Harvesting System; Springer: Singapore, 2021; p. 99180. [Google Scholar] [CrossRef]
- Bakytbekov, A.; Nguyen, T.Q.; Huynh, C.; Salama, K.N.; Shamim, A. Fully printed 3D cube-shaped multiband fractal rectenna for ambient RF energy harvesting. Nano Energy 2018, 53, 587–595. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, Z.; Song, C.; Yi, N.; Yu, Z.; Liu, Z.; Liu, S.; Wang, M.; Dexheimer, M.G.; Yang, J.; et al. Stretchable wideband dipole antennas and rectennas for RF energy harvesting. Mater. Today Phys. 2021, 18, 100377. [Google Scholar] [CrossRef] [PubMed]
- Kaifas, T.N.F. Electromagnetic Power Harvesting by Electrically Small, Resonant, Parasitic, Superdirective Arrays Designed via Characteristic Mode Theory. In Proceedings of the 2024 5th International Conference on Communications, Information, Electronic and Energy Systems (CIEES), Veliko Tarnovo, Bulgaria, 20–22 November 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Kaifas, T.N.; Samaras, T.; Siakavara, K.; Sahalos, J.N. A UTD-OM technique to design slot arrays on a perfectly conducting paraboloid. IEEE Trans. Antennas Propag. 2005, 53, 1688–1698. [Google Scholar] [CrossRef]
- Kaifas, T.; Siakavara, K.; Vafiadis, E.; Samaras, T.; Sahalos, J.N. On the design of conformal slot arrays on a perfectly conducting elliptic cone. Electr. Eng. 2006, 89, 95–105. [Google Scholar] [CrossRef]
- Vandelle, E.; Doan, P.L.; Bui, D.H.N.; Vuong, T.P.; Ardila, G.; Wu, K.; Hemour, S. High gain isotropic rectenna. In Proceedings of the 2017 IEEE Wireless Power Transfer Conference (WPTC), Taipei, Taiwan, 10–12 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Han, Y.; Kim, E.; Lee, H.L. Flat-Panel-Rectenna With Broad RF Energy Harvesting Coverage for Wireless-Powered Sensor Applications. IEEE Access 2025, 13, 6146–6153. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, S.; Sharma, A. An Analytical Framework of Multisector Rectenna Array Design for Angular Misalignment Tolerant RF Power Transfer Systems. IEEE Trans. Microw. Theory Tech. 2023, 71, 1835–1847. [Google Scholar] [CrossRef]
- Shirazi, M.A.; Khalaj-Amirhosseni, M.; Nooramin, A.S. A High Gain, Wide-band, and Wide-Angle mmWave Power Harvester Using Luneburg Lens. In Proceedings of the 2022 6th International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT), Tehran, Iran, 13–15 December 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Afify, Y.M.; Allam, A.; Tanemasa, A.; Abdel-Rahman, A.B. Wideband Circularly Polarized Antenna with Enhanced Gain and Wide Beamwidth for Energy Harvesting Applications. In Proceedings of the 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 27 March–1 April 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Hu, Y.-Y.; Sun, S.; Wu, H.; Yang, S.; Hu, J. Integrated Coupler-Antenna Design for Multibeam Dual-Polarized Patch-Array Rectenna. IEEE Trans. Antennas Propag. 2022, 70, 1869–1883. [Google Scholar] [CrossRef]
- Hu, Y.-Y.; Sun, S.; Su, H.-J.; Yang, S.; Hu, J. Dual-Beam Rectenna Based on a Short Series-Coupled Patch Array. IEEE Trans. Antennas Propag. 2021, 69, 5617–5630. [Google Scholar] [CrossRef]
- Wagih, M.; Weddell, A.S.; Beeby, S. Rectennas for Radio-Frequency Energy Harvesting and Wireless Power Transfer: A Review of Antenna Design [Antenna Applications Corner]. IEEE Antennas Propag. Mag. 2020, 62, 95–107. [Google Scholar] [CrossRef]
- Wagih, M.; Weddell, A.S.; Beeby, S. Millimeter-Wave Power Harvesting: A Review. IEEE Open J. Antennas Propag. 2020, 1, 560–578. [Google Scholar] [CrossRef]
- Eid, A.; Hester, J.; Tentzeris, M.M. A Scalable High-Gain and Large-Beamwidth mm-wave Harvesting Approach for 5G-powered IoT. In Proceedings of the IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2–7 June 2019; pp. 1309–1312. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Z.; Cui, Y.; Cai, H.; Chen, X. A Metallic Waveguide-Integrated 35-GHz Rectenna With High Conversion Efficiency. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 821–824. [Google Scholar] [CrossRef]
- Wagih, M.; Hilton, G.S.; Weddell, A.S.; Beeby, S. Broadband Millimeter-Wave Textile-Based Flexible Rectenna for Wearable Energy Harvesting. IEEE Trans. Microw. Theory Tech. 2020, 68, 4960–4972. [Google Scholar] [CrossRef]
- Eid, A.; Hester, J.G.D.; Tentzeris, M.M. Rotman Lens-Based Wide Angular Coverage and High-Gain Semipassive Architecture for Ultralong Range mm-Wave RFIDs. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1943–1947. [Google Scholar] [CrossRef]
- Ladan, S.; Guntupalli, A.B.; Wu, K. A High-Efficiency 24 GHz Rectenna Development Towards Millimeter-Wave Energy Harvesting and Wireless Power Transmission. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 3358–3366. [Google Scholar] [CrossRef]
- Wagih, M.; Hilton, G.S.; Weddell, A.S.; Beeby, S. Millimeter-Wave Power Transmission for Compact and Large-Area Wearable IoT Devices Based on a Higher Order Mode Wearable Antenna. IEEE Internet Things J. 2022, 9, 5229–5239. [Google Scholar] [CrossRef]
- Malik, B.T.; Doychinov, V.; Hayajneh, A.M.; Zaidi, S.A.R.; Robertson, I.D.; Somjit, N. Wireless Power Transfer System for Battery-Less Sensor Nodes. IEEE Access 2020, 8, 95878–95887. [Google Scholar] [CrossRef]
- Yang, Y.; Li, L.; Li, J.; Liu, Y.; Zhang, B.; Zhu, H.; Huang, K. A Circularly Polarized Rectenna Array Based on Substrate Integrated Waveguide Structure with Harmonic Suppression. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 684–688. [Google Scholar] [CrossRef]
- Deng, F.; Luk, K.M. A Broadband High-Gain Multibeam Ambient Millimeter-Wave Energy-Harvesting System. IEEE Internet Things J. 2024, 11, 4888–4898. [Google Scholar] [CrossRef]
- He, P.; Zhao, D.; Liu, L.; Xu, J.; Zheng, Q.; Yu, C.; You, X. A W-Band 2 × 2 Rectenna Array With On-Chip CMOS Switching Rectifier and On-PCB Tapered Slot Antenna for Wireless Power Transfer. IEEE Trans. Microw. Theory Tech. 2021, 69, 969–979. [Google Scholar] [CrossRef]
- Surender, D.; Halimi, M.A.; Khan, T.; Talukdar, F.A.; Nasimuddin; Rengarajan, S.R. 5G/Millimeter-Wave Rectenna Systems for Radio-Frequency Energy Harvesting/Wireless Power Transmission Applications: An overview. IEEE Antennas Propag. Mag. 2023, 65, 57–76. [Google Scholar] [CrossRef]
- Song, C.; Wang, L.; Chen, Z.; Goussetis, G.; Vandenbosch, G.A.E.; Huang, Y. Wideband mmWave Wireless Power Transfer: Theory, Design and Experiments. In Proceedings of the 2023 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, 26–31 March 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Hu, Y.-Y.; Sun, S. Dual-polarized and multi-beam cross-mesh array antenna for RF energy harvesting applications. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 2527–2528. [Google Scholar] [CrossRef]
- Hu, Y.-Y.; Sun, S.; Xu, H.; Sun, H. Grid-Array rectenna with wide angle coverage for effectively harvesting RF energy of low power density. IEEE Trans. Microw. Theory Tech. 2019, 67, 402–413. [Google Scholar] [CrossRef]
- Vandelle, E.; Bui, D.H.N.; Vuong, T.-P.; Ardila, G.; Wu, K.; Hemour, S. Harvesting ambient RF energy efficiently with optimal angular coverage. IEEE Trans. Antennas Propag. 2019, 67, 1862–1873. [Google Scholar] [CrossRef]
- Chandrasekaran, K.T.; Nasimuddin, N.; Alphones, A.; Karim, M.F. Compact circularly polarized beam switching wireless power transfer system for ambient energy harvesting applications. Int. J. RF Microw Comput.-Aided Eng. 2017, 29, e21642. [Google Scholar] [CrossRef]
- Lee, D.-J.; Lee, S.-J.; Hwang, I.-J.; Lee, W.-S.; Yu, J.-W. Hybrid power combining rectenna array for wide incident angle coverage in RF energy transfer. IEEE Trans. Microw. Theory Tech. 2017, 65, 3409–3418. [Google Scholar] [CrossRef]
- Khan, W.A.; Raad, R.; Tubbal, F.; Theoharis, P.I.; Iranmanesh, S. RF Energy Harvesting Using Multidirectional Rectennas: A Review. IEEE Sens. J. 2024, 24, 18762–18790. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, X.; Liu, J.; Ye, D.; Duan, Y.; Li, K.; Yin, Z.; Huang, Y. Flexible Metamaterial Electronics. Adv. Mater. 2022, 34, 2200070. [Google Scholar] [CrossRef]
- Manassas, A.; Kaifas, T.; Siakavara, K. Multiband printed antenna for low frequencies WLAN applications. Int. J. Microw. Opt. Technol. 2007, 2, 182–186. [Google Scholar]
- Kaifas, T.N.; Sahalos, J.N. A 4 × 4 Butler matrix optimized for UMTS applications. Microw. Opt. Technol. Lett. 2007, 49, 585–588. [Google Scholar] [CrossRef]
- Arnaoutoglou, D.G.; Empliouk, T.M.; Kaifas, T.N.F.; Chryssomallis, M.T.; Kyriacou, G. A Review of Multifunctional Antenna Designs for Internet of Things. Electronics 2024, 13, 3200. [Google Scholar] [CrossRef]
- Kaifas, T.N.; Babas, D.G.; Miaris, G.S.; Vafiadis, E.E.; Siakavara, K.; Toso, G.; Sahalos, J.N. A Stochastic Study of Large Arrays Related to the Number of Electrically Large Aperture Radiators. IEEE Trans. Antennas Propag. 2012, 62, 3520–3533. [Google Scholar] [CrossRef]
- Gotsis, K.; Kaifas, T.; Siakavara, K.; Sahalos, J. Direction of Arrival (DoA) estimation for a Switched-Beam DS-CDMA System using Neural Networks. In Proceedings of the 2007 19th International Conference on Applied Electromagnetics and Communications, Dubrovnik, Croatia, 24–26 September 2007; pp. 1–4. [Google Scholar] [CrossRef]
Ref. No | Frequency (GHz) | Antenna | Gain (dB) | Main Feature |
---|---|---|---|---|
[18] | 28 | Series-fed patch antenna array | 18 | Wide angular coverage |
[19] | 35 | Fabry–Perot resonator antenna | 15 | High efficiency, 95.5% |
[20] | 24 | Antipodal Vivaldi | 8 | Textile-based broadband rectenna |
[21] | 28 | Linear antenna arrays | 17 (dBi) | Long-range coverage |
[22] | 24 | CP patch array antenna | 12.6 (dBc) | |
[23] | 26 | Patch antenna | 8.2 (dBi) | High fractional BW (22%) |
[24] | 24 | Microstrip patch array 4 × 4 | 13.8 | Wireless information and power transfer, integrated system |
[25] | 5.8 | SIW CP antenna | 6 (dBc) | Harmonic suppression |
[26] | 24–40 | ME dipole Antenna array | 27 (dBi) | High efficiency Wide-angle spatial coverage |
[27] | 94 | Tapered slot antenna | 13.5 (dBi) | High PCE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavriilidis, I.; Karakilidis, A.; Tsafaras, A.-C.; Kaifas, T. Wireless Power Harvesting Skin. Eng. Proc. 2025, 104, 69. https://doi.org/10.3390/engproc2025104069
Gavriilidis I, Karakilidis A, Tsafaras A-C, Kaifas T. Wireless Power Harvesting Skin. Engineering Proceedings. 2025; 104(1):69. https://doi.org/10.3390/engproc2025104069
Chicago/Turabian StyleGavriilidis, Ioannis, Adamantios Karakilidis, Apostolos-Christos Tsafaras, and Theodoros Kaifas. 2025. "Wireless Power Harvesting Skin" Engineering Proceedings 104, no. 1: 69. https://doi.org/10.3390/engproc2025104069
APA StyleGavriilidis, I., Karakilidis, A., Tsafaras, A.-C., & Kaifas, T. (2025). Wireless Power Harvesting Skin. Engineering Proceedings, 104(1), 69. https://doi.org/10.3390/engproc2025104069