Electricity Demand Model for Climate Change Analysis in Systems with High Integration of Wind and Solar Energy †
Abstract
1. Introduction
1.1. The Rise of Renewable Energy and the Need for Advanced Modeling
1.2. Energy Transition in Colombia
1.3. Modeling and Simulation for Energy Planning
2. Literature Review
3. Methodology
3.1. Proposed Model
3.2. Application of the Model to Colombia
4. Results
4.1. Main Results
4.2. Demand Profile
4.3. Alternative Model Contrast: Evaluation of the Impact of Past Inputs
4.4. Execution Time
5. Conclusions and Future Work
5.1. Accuracy of the Model
5.2. Ease of Use
5.3. Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cornalino, E.; Soubes, P.; Palacio, J.F.; Alvarez, M.C.; Coppes, E.; Casaravilla, G.; Chaer, R. Handling the intermittence of wind and solar energy resources, from planning to operation. Uruguays success. In Proceedings of the 36th USAEE/IAEE North American Conference, Washington, DC, USA, 23–26 September 2018; pp. 1–5. Available online: https://iie.fing.edu.uy/publicaciones/2018/CSPACCC18 (accessed on 1 March 2025).
- Casaravilla, G.; Chaer, R. Energy transition of Uruguay. IAEE Energy Forum 2021, 11–14. Available online: https://iie.fing.edu.uy//publicaciones/2021/CC21 (accessed on 1 March 2025).
- Escenarios Nacionales Transición Energética Justa; Ministerio de Minas y Energía: Bogotá, Colombia, 2024. Available online: https://www.minenergia.gov.co/documents/12383/Escenarios-TEJ-2024.pdf (accessed on 1 March 2025).
- SimSEE. IIE-FING-UdeLaR. 2022. Available online: https://simsee.org (accessed on 1 March 2025).
- Caporale, X.; Camacho, V.; Casaravilla, G.; Chaer, R. Evaluación Técnico-Económica del Impacto del Cambio Climático en la Cuenca Del Río de la Plata en la Generación Eléctrica (Spanish); World Bank Group: Washington, DC, USA, 2023. [Google Scholar]
- Yousaf, H.; Munir, K.; Hassan, A.; Haris, M.; Bokhari, S.A.S.; Ullah, K. Time Series and Machine Learning Methods for Short-Term Load Forecasting in Modern Power Systems. In Proceedings of the 2024 International Conference on Electrical, Communication and Computer Engineering (ICECCE), Kuala Lumpur, Malaysia, 30–31 October 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Fang, L.; Li, Z.; Zhang, K.; Liu, K.; Chen, B. Short-Term Load Forecasting Model Based on Modified Sparrow Search Algorithm. In Proceedings of the 2024 IEEE 6th International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 26–28 July 2024; pp. 251–255. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, X.; Ren, C.; Zhan, Z.; Wang, T.; Ma, D. Short-Term Load Forecasting Based on Spatial-Temporal Correlation for Virtual Power Plant. In Proceedings of the 2024 3rd International Conference on Power Systems and Electrical Technology (PSET), Tokyo, Japan, 5–8 August 2024; pp. 791–796. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, K.; Liu, T.; Zhang, X.; Sun, L.; Wu, P.; Li, L.; Zhang, X. Short Term Load Forecasting Method Based on Time Series Decomposition. In Proceedings of the 2024 4th International Conference on Energy Engineering and Power Systems (EEPS), Hangzhou, China, 9–11 August 2024; pp. 411–414. [Google Scholar] [CrossRef]
- Tang, X. Optimizing LSTM, Bi-LSTM, and GRU Models with SSA for Daily Electricity Forecasting. In Proceedings of the 2024 5th International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), Nanchang, China, 27–29 September 2024; pp. 53–58. [Google Scholar] [CrossRef]
- Wang, C.; Pinson, P.; Wang, Y. Seamless and Multi-Resolution Energy Forecasting. IEEE Trans. Smart Grid 2025, 16, 383–395. [Google Scholar] [CrossRef]
- Miraki, A.; Parviainen, P.; Arghandeh, R. Probabilistic forecasting of renewable energy and electricity demand using Graph-based Denoising Diffusion Probabilistic Model. Energy AI 2025, 19, 100459. [Google Scholar] [CrossRef]
- Karuparthi, Y.; Shoaib, S.H.; Kommareddi, H.C.; Jothi, J.A.A. Predicting Energy Demand with Interpretable Machine Learning Models. In Proceedings of the 2024 International Conference on Artificial Intelligence, Metaverse and Cybersecurity (ICAMAC), Dubai, United Arab Emirates, 25–26 October 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Kim, D.; Lee, D.; Joo, S.-K.; Wi, Y.-M. Medium-Term Minimum Demand Forecasting Based on the Parallel LSTM-MLP Model. IEEE Access 2024, 12, 195319–195331. [Google Scholar] [CrossRef]
- Li, S.; Kong, W.; Wang, Y.; Yuan, L. Medium and long-term energy demand forecasts by sectors in China under the goal of ‘carbon peaking & carbon neutrality’: Based on the LEAP-China model. Energy 2024, 310, 133017. [Google Scholar] [CrossRef]
- Aldarraji, M.; Vega-Márquez, B.; Pontes, B.; Mahmood, B.; Riquelme, J.C. Addressing energy challenges in Iraq: Forecasting power supply and demand using artificial intelligence models. Heliyon 2024, 10, e25821. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M.; Aziz, M.O.; Bokhari, S.A.S.; Haris, M.; Iqbal, M.; Ullah, K. Enhancing Short-Term Load Forecasting Accuracy in the Power Systems Using a Hybrid CNN-GRU Model. In Proceedings of the 2024 International Conference on Electrical, Communication and Computer Engineering (ICECCE), Kuala Lumpur, Malaysia, 30–31 October 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Peng, J.; Kimmig, A.; Wang, D.; Niu, Z.; Liu, X.; Tao, X.; Ovtcharova, J. Energy consumption forecasting based on spatio-temporal behavioral analysis for demand-side management. Appl. Energy 2024, 374, 124027. [Google Scholar] [CrossRef]
- Castro, V.; Georgiou, M.; Jackson, T.; Hodgkinson, I.R.; Jackson, L.; Lockwood, S. Digital data demand and renewable energy limits: Forecasting the impacts on global electricity supply and sustainability. Energy Policy 2024, 195, 114404. [Google Scholar] [CrossRef]
- Jiang, M.; Zhou, H. D_KAN Model: Enhancing Power Load Forecasting with Kolmogorov-Arnold Networks. In Proceedings of the 2024 4th International Conference on Energy Engineering and Power Systems (EEPS), Hangzhou, China, 9–11 August 2024; pp. 335–338. [Google Scholar] [CrossRef]
- Cornalino, E.; Camacho, V.; Vallejo, D.; Gaggero, G.; Groposo, V. Probabilistic Modeling for the Uruguayan electrical load: Present capacity and current improvements. In Proceedings of the 2021 IEEE URUCON, Montevideo, Uruguay, 24–26 November 2021; pp. 351–354. [Google Scholar] [CrossRef]
- Cornalino, E.; Chaer, R. Probabilistic Electric Load Forecasting Model for the Uruguayan Interconnected Electrical System. In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’18), Salamanca, Spain, 21–23 March 2018. [Google Scholar]
- Zhou, W.; Chang, J.; Zuo, W.; Wang, F. A seasonal grey model for forecasting energy imports demand from information differences perspective. Appl. Math. Model. 2025, 140, 115907. [Google Scholar] [CrossRef]
- Rodríguez, F.; Maqueda, E.; Fernández, M.; Pimenta, P.; Marques, M.I. A novel methodology for day-ahead buildings energy demand forecasting to provide flexibility services in energy markets. Int. J. Electr. Power Energy Syst. 2024, 161, 110207. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. Available online: https://doi.org/10.24381/cds.adbb2d47 (accessed on 1 March 2025).
Demand [MW] | Temperature [°C] | |||||||
---|---|---|---|---|---|---|---|---|
Region | City | Location | Min. | Av. | Max. | Min. | Av. | Max. |
Caribe | Barranquilla | 10°59′ N 74°48′ W | 2463 | 3290 | 4087 | 24.2 | 27.2 | 31.8 |
Oriente | Bogotá | 4°42′ N 74°4′ W | 1280 | 2213 | 2800 | 3.7 | 13.8 | 22.6 |
Suroccidente | Cali | 3°25′ N 76°31′ W | 1150 | 1958 | 2744 | 15.9 | 22.7 | 31.0 |
Antioquia | Medellín | 6°13′ N 75°35′ W | 1013 | 1836 | 2442 | 11.2 | 18.1 | 29.1 |
Nordeste | Bucaramanga | 7°8′ N 73°0′ W | 987 | 1608 | 2156 | 8.6 | 16.4 | 23.2 |
MAE_h | MAE24 | ||
---|---|---|---|
WT | Caribe | 2.49% | 2.09% |
WOT | Caribe | 4.25% | 3.99% |
WT | Oriente | 1.92% | 1.51% |
WOT | Oriente | 1.96% | 1.60% |
WT | Suroccidente | 2.74% | 2.10% |
WOT | Suroccidente | 2.78% | 2.54% |
WT | Antioquia | 2.75% | 2.24% |
WOT | Antioquia | 3.10% | 2.85% |
WT | Nordeste | 2.58% | 2.18% |
WOT | Nordeste | 2.82% | 2.56% |
MAE_h | MAE_h Reduction | ||
---|---|---|---|
WT | Caribe | 1.95% | 0.54% |
WOT | Caribe | 4.14% | 0.11% |
WT | Oriente | 1.69% | 0.23% |
WOT | Oriente | 1.81% | 0.15% |
WT | Suroccidente | 1.91% | 0.83% |
WOT | Suroccidente | 2.69% | 0.09% |
WT | Antioquia | 2.20% | 0.55% |
WOT | Antioquia | 2.99% | 0.11% |
WT | Nordeste | 2.07% | 0.51% |
WOT | Nordeste | 2.68% | 0.14% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortes, J.A.; Silvera, M.; Chaer, R.; Flieller, G.; Estevez, G.A.J.; Camacho, V. Electricity Demand Model for Climate Change Analysis in Systems with High Integration of Wind and Solar Energy. Eng. Proc. 2025, 101, 10. https://doi.org/10.3390/engproc2025101010
Cortes JA, Silvera M, Chaer R, Flieller G, Estevez GAJ, Camacho V. Electricity Demand Model for Climate Change Analysis in Systems with High Integration of Wind and Solar Energy. Engineering Proceedings. 2025; 101(1):10. https://doi.org/10.3390/engproc2025101010
Chicago/Turabian StyleCortes, Juanita Acosta, Marcelo Silvera, Ruben Chaer, Guillermo Flieller, Guillermo Andres Jimenez Estevez, and Vanina Camacho. 2025. "Electricity Demand Model for Climate Change Analysis in Systems with High Integration of Wind and Solar Energy" Engineering Proceedings 101, no. 1: 10. https://doi.org/10.3390/engproc2025101010
APA StyleCortes, J. A., Silvera, M., Chaer, R., Flieller, G., Estevez, G. A. J., & Camacho, V. (2025). Electricity Demand Model for Climate Change Analysis in Systems with High Integration of Wind and Solar Energy. Engineering Proceedings, 101(1), 10. https://doi.org/10.3390/engproc2025101010