Spatiotemporal Regression and Autoregression for Fusing Satellite Precipitation Data †
Abstract
1. Introduction
2. Data Sources
2.1. Study Area
2.2. Global Satellite Mapping of Precipitation from Japanese Aerospace Exploration Agency
2.3. Unified Precipitation Project by NOAA-CPC
2.4. Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) Data
3. Methods
3.1. Obtain Initial Weights by Triple Collocation
3.2. Spatial Autoregressive Model with Dirichlet Distributed Data
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McColl, K.A.; Vogelzang, J.; Konings, A.G.; Entekhabi, D.; Piles, M.; Stoffelen, A. Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target. Geophys. Res. Lett. 2014, 41, 6229–6236. [Google Scholar] [CrossRef]
- Hines, B.; Qian, G.; Tordesillas, A. Mapping Australia’s precipitation: Harnessing the synergies of multi-satellite remote sensing and gauge network data. GISci. Remote Sens. 2022, 59, 2084–2110. [Google Scholar] [CrossRef]
- Stoffelen, A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res. Ocean. 1998, 103, 7755–7766. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Crow, W.T.; Anderson, M.C.; Hain, C. An objective methodology for merging satellite- and model-based soil moisture products. Water Resour. Res. 2012, 48, W11502. [Google Scholar] [CrossRef]
- Roebeling, R.A.; Wolters, E.L.A.; Meirink, J.F.; Leijnse, H. Triple Collocation of Summer Precipitation Retrievals from SEVIRI over Europe with Gridded Rain Gauge and Weather Radar Data. J. Hydrometeorol. 2012, 13, 1552–1566. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Paul, S.; Alemohammad, H. Examining the performance of precipitation products in characterizing the Indian summer monsoon rainfall (ISMR) using triple collocation. J. Hydrol. 2025, 657, 133136. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Kachi, M.; Kubota, T.; Ushio, T.; Shige, S.; Kida, S.; Aonashi, K.; Okamoto, K.; Oki, R. Development and utilization of “jaxa global rainfall watch” system based on combined microwave and infrared radiometers aboard satellites. IEEJ Trans. Fundam. Mater. 2011, 131, 729–737. [Google Scholar] [CrossRef]
- Xie, P.; Chen, M.; Shi, W. CPC unified gauge-based analysis of global daily precipitation. In Proceedings of the 24th Conference on Hydrology, Atlanta, GA, USA, 17–21 January 2009; Volume 2. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Moka, S.; Mengersen, K.; Liquet, B. Spatial Autoregressive Model on a Dirichlet Distribution. arXiv 2024, arXiv:2403.13076. [Google Scholar]
- Aitchison, J.; Shen, S.M. Logistic-normal distributions:Some properties and uses. Biometrika 1980, 67, 261–272. [Google Scholar] [CrossRef]
- Aitchison, J. The Statistical Analysis of Compositional Data. J. R. Stat. Soc. Ser. (Methodol.) 1982, 44, 139–177. [Google Scholar] [CrossRef]
- Maier, M. DirichletReg: Dirichlet Regression for Compositional Data in R; WU Vienna University of Economics and Business: Vienna, Austria, 2014. [Google Scholar]
- Sharma, S.; Khadka, N.; Hamal, K.; Shrestha, D.; Talchabhadel, R.; Chen, Y. How Accurately Can Satellite Products (TMPA and IMERG) Detect Precipitation Patterns, Extremities, and Drought Across the Nepalese Himalaya? Earth Space Sci. 2020, 7, e2020EA001315. [Google Scholar] [CrossRef]
- Müller, M.F.; Thompson, S.E. Bias adjustment of satellite rainfall data through stochastic modeling: Methods development and application to Nepal. Adv. Water Resour. 2013, 60, 121–134. [Google Scholar] [CrossRef]
SPE | NOAA-CPC | NOAA-CHIRPS | JAXA-GSMaP |
---|---|---|---|
Spatial Resolution | 0.5° × 0.5° | 0.05° × 0.05° | 0.1° × 0.1° |
Temporal Resolution | Daily | Hourly | Daily |
Start Date | 1 January 1979 | 1 January 1981 | 1 April 2000 |
Parameter | Component 1 (base) | Component 2 | Component 3 |
---|---|---|---|
0 | 0.1505 | −0.0515 | |
0 | |||
3.0542 | |||
0.8850 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Qian, G. Spatiotemporal Regression and Autoregression for Fusing Satellite Precipitation Data. Eng. Proc. 2025, 101, 1. https://doi.org/10.3390/engproc2025101001
Li X, Qian G. Spatiotemporal Regression and Autoregression for Fusing Satellite Precipitation Data. Engineering Proceedings. 2025; 101(1):1. https://doi.org/10.3390/engproc2025101001
Chicago/Turabian StyleLi, Xueming, and Guoqi Qian. 2025. "Spatiotemporal Regression and Autoregression for Fusing Satellite Precipitation Data" Engineering Proceedings 101, no. 1: 1. https://doi.org/10.3390/engproc2025101001
APA StyleLi, X., & Qian, G. (2025). Spatiotemporal Regression and Autoregression for Fusing Satellite Precipitation Data. Engineering Proceedings, 101(1), 1. https://doi.org/10.3390/engproc2025101001