Synthesis of 4-Arylallylidenepyrazolone Derivatives †
Abstract
:1. Introduction
2. Methods
2.1. General
2.2. General Procedure for the Synthesis of (4Z)-5-Methyl-4-[3-(4-nitrophenyl)-allylidene]-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 3 and 4
2.3. Photoisomerization of 4
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Z.; Dai, X.; Li, C.; Wang, X.; Tian, J.; Feng, Y.; Xie, J.; Ma, C.; Nie, Z.; Fan, P.; et al. Pyrazolone structural motif in medicinal chemistry: Retrospect and prospect. Eur. J. Med. Chem. 2020, 186, 111893. [Google Scholar] [CrossRef]
- Higashi, Y.; Jitsuiki, D.; Chayama, K.; Yoshizumi, M. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a novel free radical scavenger, for treatment of cardiovascular diseases. Recent Pat. Cardiovasc. Drug Discov. 2006, 1, 85–93. [Google Scholar] [CrossRef]
- Yuan, W.J.; Yasuhara, T.; Shingo, T.; Muraoka, K.; Agari, T.; Kameda, M.; Uozumi, T.; Tajiri, N.; Morimoto, T.; Jing, M.; et al. Neuroprotective effects of edaravone-administration on 6-OHDA-treated dopaminergic neurons. BMC Neurosci. 2008, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Bailly, C.; Hecquet, P.E.; Kouach, M.; Thuru, X.; Goossens, J.F. Chemical reactivity and uses of 1-phenyl-3-methyl-5-pyrazolone (PMP), also known as edaravone. Bioorg. Med. Chem. 2020, 28, 115463. [Google Scholar] [CrossRef]
- Sujatha, K.; Shanthi, G.; Selvam, N.P.; Manoharan, S.; Perumal, P.T.; Rajendran, M. Synthesis and antiviral activity of 4,4′-(arylmethylene)bis(1H-pyrazol-5-ols) against peste des petits ruminant virus (PPRV). Bioorg. Med. Chem. Lett. 2009, 19, 4501–4503. [Google Scholar] [CrossRef]
- Bhavanarushi, S.; Kanakaiah, V.; Bharath, G.; Gangagnirao, A.; Vatsala Rani, J. Synthesis and antibacterial activity of 4,4′-(aryl or alkyl methylene)-bis(1H-pyrazol-5-ol) derivatives. Med. Chem. Res. 2014, 23, 158–167. [Google Scholar] [CrossRef]
- Mahajan, P.S.; Nikam, M.D.; Khedkar, V.; Jha, P.; Badadhe, P.V.; Gilla, C.H. An Organocatalyzed Efficient One-pot Synthesis, Biological Evaluation, and Molecular Docking Studies of 4,4′-(Arylmethylene)bis-(3-methyl-1-phenyl-1H-pyrazol-5-ols). J. Heterocycl. Chem. 2017, 54, 1109–1120. [Google Scholar] [CrossRef]
- Diwan, F.; Shaikh, M.; Farooqui, M. Lemon juice catalyzed efficient one-pot synthesis, antioxidant and antimicrobial evaluation of bispyrazolyl methanes. Chem. Biol. Interface 2018, 8, 255–268. [Google Scholar]
- Cadena-Cruz, J.E.; Guamán-Ortiz, L.M.; Romero-Benavides, J.C.; Bailon-Moscoso, N.; Murillo-Sotomayor, K.E.; Ortiz-Guamán, N.V.; Heredia-Moya, J. Synthesis of 4,4′-(arylmethylene)bis(3-methyl-1-phenyl-1H-pyrazol-5-ols) and evaluation of their antioxidant and anticancer activities. BMC Chem. 2021, 15, 38. [Google Scholar] [CrossRef]
- Chauhan, P.; Mahajan, S.; Enders, D. Asymmetric synthesis of pyrazoles and pyrazolones employing the reactivity of pyrazolin-5-one derivatives. Chem. Commun. 2015, 51, 12890–12907. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-H.; Du, D.-M. Squaramide-catalysed enantioselective Michael addition of pyrazolin-5-ones to nitroalkenes. Org. Biomol. Chem. 2013, 11, 6215. [Google Scholar] [CrossRef]
- Hack, D.; Chauhan, P.; Deckers, K.; Mizutani, Y.; Raabe, G.; Enders, D. Combining silver- and organocatalysis: An enantioselective sequential catalytic approach towards pyrano-annulated pyrazoles. Chem. Commun. 2015, 51, 2266–2269. [Google Scholar] [CrossRef] [Green Version]
- Amireddy, M.; Chen, K. Organocatalytic one-pot asymmetric synthesis of functionalized spiropyrazolones via a Michael-aldol sequential reaction. RSC Adv. 2016, 6, 77474–77480. [Google Scholar] [CrossRef]
- Li, J.-H.; Cui, Z.-H.; Du, D.-M. Diastereo- and enantioselective construction of cyclohexanone-fused spirospyrazolones containing four consecutive stereocenters through asymmetric sequential reactions. Org. Chem. Front. 2016, 3, 1087–1090. [Google Scholar] [CrossRef]
- Wu, B.; Chen, J.; Li, M.Q.; Zhang, J.X.; Xu, X.P.; Ji, S.J.; Wang, X.W. Highly enantioselective synthesis of spiro[cyclohexanone-oxindoles] and spiro[cyclohexanone-pyrazolones] by asymmetric cascade [5+1] double Michael reactions. Eur. J. Org. Chem. 2012, 1318–1327. [Google Scholar] [CrossRef]
- Wang, J.; Huang, G.B.; Yang, L.J.; Li, F.; Nie, J.; Ma, J.A. Tandem stereoselective synthesis of new trifluoromethylated pyranopyrazoles. J. Fluor. Chem. 2015, 171, 27–35. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, S.; Wang, S.; Fang, K.; Dong, G.; Liu, N.; Miao, Z.; Yao, J.; Li, J.; Zhang, W.; et al. Divergent cascade construction of skeletally diverse “privileged” pyrazole-derived molecular architectures. Eur. J. Org. Chem. 2015, 2015, 2030–2037. [Google Scholar] [CrossRef]
- Wu, S.; Li, Y.; Xu, G.; Chen, S.; Zhang, Y.; Liu, N.; Dong, G.; Miao, C.; Su, H.; Zhang, W.; et al. Novel spiropyrazolone antitumor scaffold with potent activity: Design, synthesis and structure-activity relationship. Eur. J. Med. Chem. 2016, 115, 141–147. [Google Scholar] [CrossRef]
- Companyó, X.; Zea, A.; Alba, A.N.R.; Mazzanti, A.; Moyano, A.; Rios, R. Organocatalytic synthesis of spiro compounds via a cascade Michael-Michael-aldol reaction. Chem. Commun. 2010, 46, 6953–6955. [Google Scholar] [CrossRef]
- Alba, A.-N.R.; Zea, A.; Valero, G.; Calbet, T.; Font-Bardía, M.; Mazzanti, A.; Moyano, A.; Rios, R. Highly Stereoselective Synthesis of Spiropyrazolones. Eur. J. Org. Chem. 2011, 2011, 1318–1325. [Google Scholar] [CrossRef]
- Yetra, S.R.; Mondal, S.; Suresh, E.; Biju, A.T. Enantioselective synthesis of functionalized pyrazoles by NHC-catalyzed reaction of pyrazolones with α,β-unsaturated aldehydes. Org. Lett. 2015, 17, 1417–1420. [Google Scholar] [CrossRef]
- Huang, H.; Yu, Y.; Gao, Z.; Zhang, Y.; Li, C.; Xu, X.; Jin, H.; Yan, W.; Ma, R.; Zhu, J.; et al. Discovery and Optimization of 1,3,4-Trisubstituted-pyrazolone Derivatives as Novel, Potent, and Nonsteroidal Farnesoid X Receptor (FXR) Selective Antagonists. J. Med. Chem. 2012, 55, 7037–7053. [Google Scholar] [CrossRef]
- Szukalski, A.; Jędrzejewska, B.; Krawczyk, P.; Bajorek, A. An optical modulator on the pyrazolone-based bi-component system. Dye. Pigment. 2020, 172, 107805. [Google Scholar] [CrossRef]
- Ma, R.; Zhu, J.; Liu, J.; Chen, L.; Shen, X.; Jiang, H.; Li, J. Microwave-Assisted One-Pot Synthesis of Pyrazolone Derivatives under Solvent-Free Conditions. Molecules 2010, 15, 3593–3601. [Google Scholar] [CrossRef] [Green Version]
- Gehrke, S.S. Small Molecules with Anti-trypanosomal and Anti-leishmanial Activity; University of East Anglia: Norwich, UK, 2012. [Google Scholar]
- Rodríguez-Gutiérrez, S.V.; Barreiro-Costa, O.; León, C.D.A.; Heredia-Moya, J. Synthesis and Leishmanicidal Activity of Molecular Hybrids 1,2,3-Triazole-Chalcones. Chem. Proc. 2021, 3, 55. [Google Scholar] [CrossRef]
- Barreiro-Costa, O.; Morales-Noboa, G.; Rojas-Silva, P.; Lara-Barba, E.; Santamaría-Aguirre, J.; Bailón-Moscoso, N.; Romero-Benavides, J.C.; Herrera, A.; Cueva, C.; Ron-Garrido, L.; et al. Synthesis and evaluation of biological activities of bis(spiropyrazolone)cyclopropanes: A potential application against leishmaniasis. Molecules 2021, 26, 4960. [Google Scholar] [CrossRef]
- Li, S.; Wang, L.; Chauhan, P.; Peuronen, A.; Rissanen, K.; Enders, D. Asymmetric Synthesis of Five-Membered Spiropyrazolones via N-Heterocyclic Carbene (NHC)-Catalyzed [3+2] Annulations. Synthesis 2017, 49, 1808–1815. [Google Scholar] [CrossRef] [Green Version]
- Krasnaya, Z.A. Dienone ⇆ 2H-pyran valence isomerization. Chem. Heterocycl. Compd. 1999, 35, 1255–1271. [Google Scholar] [CrossRef]
- Tejedor, D.; Delgado-Hernández, S.; Diana-Rivero, R.; Díaz-Díaz, A.; García-Tellado, F. Recent Advances in the Synthesis of 2H-Pyrans. Molecules 2019, 24, 2904. [Google Scholar] [CrossRef] [Green Version]
- Gosink, T.A. Valence isomers. Substituent effects on the equilibrium between 2H-pyrans and cis-dienones. J. Org. Chem. 1974, 39, 1942–1944. [Google Scholar] [CrossRef]
Entry | Catalyst (mol%) | Solvent | Time (min) | Yield (%) 1 | Yield 3 (%) 1 | Yield 4 (%) 1 |
---|---|---|---|---|---|---|
1 | ---- | THF | 24 h | 36 | 30 | 6 |
2 | DABCO (10%) | EtOH | 60 | 78 | 73 | 5 |
3 | DABCO (10%) | THF | 60 | 75 | ---- | 75 |
4 | DABCO (10%) | CHCl3 | 180 | 64 | 53 | 12 |
5 | DABCO (10%) | Toluene | 120 | 75 | 50 | 25 |
6 | DABCO (10%) | Et2O | 120 | 39 | 23 | 16 |
7 | DABCO (10%) | CH3CN | 120 | 75 | ---- | 75 |
8 | DABCO (1%) | EtOH | 90 | 71 | 50 | 21 |
9 | DABCO (5%) | EtOH | 90 | 72 | 48 | 24 |
10 | DABCO (20%) | EtOH | 60 | 78 | 56 | 22 |
11 | ---- | EtOH | 60 | 55 | 28 | 27 |
12 | Et3N (10%) | EtOH | 90 | 62 | 37 | 25 |
13 | CH3COONa (10%) | EtOH | 90 | 73 | 36 | 37 |
14 | Pyridine (10%) | EtOH | 90 | 33 | 32 | 1 |
15 | FeCl3 (10%) | EtOH | 90 | 80 | 60 | 20 |
16 | FeCl3,6H2O (10%) | EtOH | 120 | 84 | 66 | 18 |
17 | HMTA (10%) | EtOH | 90 | 44 | 42 | 2 |
18 | L-Proline (10%) | EtOH | 60 | 85 | 69 | 16 |
19 | Morpholine (10%) | EtOH | 90 | 46 | 40 | 6 |
20 | Alopurinol (10%) | EtOH | 180 | 41 | 38 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Llanos, E.; Romero-Benavides, J.C.; Heredia-Moya, J. Synthesis of 4-Arylallylidenepyrazolone Derivatives. Chem. Proc. 2022, 8, 7. https://doi.org/10.3390/ecsoc-25-11714
Aguilar-Llanos E, Romero-Benavides JC, Heredia-Moya J. Synthesis of 4-Arylallylidenepyrazolone Derivatives. Chemistry Proceedings. 2022; 8(1):7. https://doi.org/10.3390/ecsoc-25-11714
Chicago/Turabian StyleAguilar-Llanos, Esteban, Juan Carlos Romero-Benavides, and Jorge Heredia-Moya. 2022. "Synthesis of 4-Arylallylidenepyrazolone Derivatives" Chemistry Proceedings 8, no. 1: 7. https://doi.org/10.3390/ecsoc-25-11714
APA StyleAguilar-Llanos, E., Romero-Benavides, J. C., & Heredia-Moya, J. (2022). Synthesis of 4-Arylallylidenepyrazolone Derivatives. Chemistry Proceedings, 8(1), 7. https://doi.org/10.3390/ecsoc-25-11714