Bioavailability of Rapeseed Oil Fortified with Ethyl Sinapate †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Samples
2.3. NMR Analysis
2.4. Enzymatic Synthesis
2.5. Addition of the ESA to Refined Rapeseed Oil
2.6. In Vitro Digestion
2.7. Antioxidant Activity
2.7.1. Sample Preparation
2.7.2. Analytical Methods
2.8. Statistical Analysis
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wroniak, M.; Rękas, A. Nutritional value of cold-pressed rapeseed oil during long term storage as influenced by the type of packaging material, exposure to light & oxygen and storage temperature. J. Food Sci. Technol. 2016, 53, 1338–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.Q.; Ji, C.; Sun, Y.Y.; Yang, M.L.; Chu, X.G. Analysis of synthetic antioxidants and preservatives in edible vegetable oil by HPLC/TOF-MS. Food Chem. 2009, 113, 692–700. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Rabiej, D.; Krzemiński, M. Synthesis of novel octyl sinapate to enhance antioxidant capacity of rapeseed–linseed oil mixture. J. Sci. Food Agric. 2018, 98, 1625–1631. [Google Scholar] [CrossRef] [PubMed]
- Menezes, J.C.J.M.D.S.; Kamat, S.P.; Cavaleiro, J.A.S.; Gaspar, A.; Garrido, J.; Borges, F. Synthesis and antioxidant activity of long chain alkyl hydroxycinnamates. Eur. J. Med. Chem. 2011, 46, 773–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrido, J.; Gaspar, A.; Garrido, E.M.; Miri, R.; Tavakkoli, M.; Pourali, S.; Saso, L.; Borges, F.; Firuzi, O. Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidativ estress. Biochimie 2012, 94, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Seiquer, I.; Rueda, A.; Olalla, M.; Cabrera-Vique, C. Assessing the bioavailability of polyphenols and antioxidant properties of extra virgin argan oil by simulated digestion and Caco-2 cell assays. Comparative study with extra virgin olive oil. Food Chem. 2015, 88, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Rubió, L.; Macià, A.; Castell-Auví, A.; Pinent, M.; Blay, T.; Ardévol, A.; Romero, M.-P.; Motilva, M.-J. Effect of the co-occurring olive oil and thyme extracts on the phenolic bioaccesibility and bioavailability assessed by in vitro digestion and cell models. Food Chem. 2014, 149, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Szydłowska-Czerniak, A.; Łaszewska, A. Effect of refining process on antioxidant capacity, total phenolics and prooxidants contents in rapeseed oils. LWT–Food Sci. Technol. 2015, 64, 853–859. [Google Scholar] [CrossRef]
- Rabiej, D.; Szydłowska-Czerniak, A. Antioxidant activity of rapeseed oil with octyl sinapate, an amphiphilic antioxidant, stored in various types of packages under various conditions. J. Food Nutr. Res. 2020, 59, 16–22. [Google Scholar]
- Dinnella, C.; Minichino, P.; D’andrea, A.M.; Monteleone, E. Bioaccessibility and antioxidant activity stability of phenolic compounds from extra-virgin olive oils during in vitro digestion. J. Agric. Food Chem. 2007, 55, 8423–8429. [Google Scholar] [CrossRef] [PubMed]
Step of Digestion | Sample | ABTS ± SD | DPPH ± SD | FC ± SD |
---|---|---|---|---|
(μmol TE/100 g) | ||||
before digestion | RO | 1277.62 ± 189.47 | 520.32 ± 5.69 | 120.01 ± 15.53 |
RO + 0.02% ESA | 1939.12 ± 22.98 | 580.74 ± 40.86 | 292.28 ± 6.99 | |
RO + 0.5% ESA | 4036.24 ± 688.55 | 5183.95 ± 493.69 | 581.98 ± 15.71 | |
after first step | RO | 1631.97 ± 82.83 | 616.44 ± 32.69 | 231.31 ± 12.44 |
RO + 0.02% ESA | 1148.05 ± 80.40 | 533.83 ± 39.35 | 261.41 ± 19.00 | |
RO + 0.5% ESA | 10,507.47 ± 626.17 | 3570.44 ± 333.11 | 422.40 ± 11.97 | |
after second step | RO | 761.37 ± 60.04 | 356.70 ± 44.66 | 61.46 ± 8.82 |
RO + 0.02% ESA | 1703.82 ± 20.42 | 447.67 ± 45.72 | 504.66 ± 21.23 | |
RO + 0.5% ESA | 11,597.04 ± 646.61 | 4177.28 ± 374.25 | 486.23 ± 27.08 | |
after first and second steps | RO | 1489.95 ± 106.01 | 574.55 ± 42.96 | 127.29 ± 8.75 |
RO + 0.02% ESA | 1518.43 ± 77.76 | 525.71 ± 16.94 | 352.13 ± 15.03 | |
RO + 0.5% ESA | 10,485.70 ± 1000.22 | 4684.67 ± 253.84 | 768.01 ± 7.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabiej-Kozioł, D.; Krzemiński, M.P.; Wiśniewska, I.; Szydłowska-Czerniak, A. Bioavailability of Rapeseed Oil Fortified with Ethyl Sinapate. Chem. Proc. 2022, 8, 26. https://doi.org/10.3390/ecsoc-25-11725
Rabiej-Kozioł D, Krzemiński MP, Wiśniewska I, Szydłowska-Czerniak A. Bioavailability of Rapeseed Oil Fortified with Ethyl Sinapate. Chemistry Proceedings. 2022; 8(1):26. https://doi.org/10.3390/ecsoc-25-11725
Chicago/Turabian StyleRabiej-Kozioł, Dobrochna, Marek P. Krzemiński, Iwona Wiśniewska, and Aleksandra Szydłowska-Czerniak. 2022. "Bioavailability of Rapeseed Oil Fortified with Ethyl Sinapate" Chemistry Proceedings 8, no. 1: 26. https://doi.org/10.3390/ecsoc-25-11725
APA StyleRabiej-Kozioł, D., Krzemiński, M. P., Wiśniewska, I., & Szydłowska-Czerniak, A. (2022). Bioavailability of Rapeseed Oil Fortified with Ethyl Sinapate. Chemistry Proceedings, 8(1), 26. https://doi.org/10.3390/ecsoc-25-11725