Molecular Emitters as a Tunable Light Source for Optical Multisensor Systems †
Abstract
:1. Introduction
2. Methods and Materials
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Fu, X.; Wang, X.; Rao, X. An LED-based spectrally tuneable light source for visible and near-infrared spectroscopy analysis: A case study for sugar content estimation of citrus. Biosyst. Eng. 2017, 163, 87–93. [Google Scholar] [CrossRef]
- Lastra-Mejias, M.; Villa-Martinez, A.; Izquierdo, M.; Aroca-Santos, R.; Cancilla, J.C.; Torrecilla, J.S. Combination of LEDs and cognitive modeling to quantify sheep cheese whey in watercourses. Talanta 2019, 203, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Müller-Maatsch, J.; Alewijn, M.; Wijtten, M.; Weesepoel, Y. Detecting fraudulent additions in skimmed milk powder using a portable, hyphenated, optical multi-sensor approach in combination with one-class classification. Food Control 2021, 121, 107744. [Google Scholar] [CrossRef]
- Bogomolov, A.; Zabarylo, U.; Kirsanov, D.; Belikova, V.; Ageev, V.; Usenov, I.; Galyanin, V.; Minet, O.; Sakharova, T.; Danielyan, G.; et al. Development and testing of an led-based near-infrared sensor for human kidney tumor diagnostics. Sensors 2017, 17, 1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lima, K.M.G. A portable photometer based on LED for the determination of aromatic hydrocarbons in water. Microchem. J. 2012, 103, 62–67. [Google Scholar] [CrossRef]
- Gitlina, A.Y.; Surkova, A.; Ivonina, M.V.; Sizov, V.V.; Petrovskii, S.K.; Legin, A.; Starova, G.L.; Koshevoy, I.O.; Grachova, E.V.; Kirsanov, D.O. Cyclometalated Ir(III) complexes as tuneable multiband light sources for optical multisensor systems: Feasibility study. Dyes Pigments 2020, 180, 108428. [Google Scholar] [CrossRef]
- Surkova, A.A.; Paderina, A.V.; Legin, A.V.; Grachova, E.V.; Kirsanov, D.O. Cu(I)-based molecular emitters for quantification of fluoride and phosphate in surface waters. Measurement 2021, 184, 109976. [Google Scholar] [CrossRef]
- Gitlina, A.Y.; Ivonina, M.V.; Sizov, V.V.; Starova, G.L.; Pushkarev, A.P.; Volyniuk, D.; Tunik, S.P.; Koshevoy, I.O.; Grachova, E.V. A rare example of a compact heteroleptic cyclometalated iridium(III) complex demonstrating well-separated dual emission. Dalton Trans. 2018, 47, 7578–7586. [Google Scholar] [CrossRef] [PubMed]
- Henwood, A.F.; Bansal, A.K.; Cordes, D.B.; Slawin, A.M.Z.; Samuel, I.D.W.; Zysman-Colman, E. Solubilised bright blue-emitting iridium complexes for solution processed OLEDs. J. Mater. Chem. C 2016, 4, 3726–3737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Chen, H.-F.; Wong, K.-T.; Thompson, M.E. Study of ion-paired iridium complexes (soft salts) and their application in organic light emitting diodes. J. Am. Chem. Soc. 2010, 132, 3133–3139. [Google Scholar] [CrossRef] [PubMed]
- Di Censo, D.; Fantacci, S.; De Angelis, F.; Klein, C.; Evans, N.; Kalyanasundaram, K.; Bolink, H.J.; Grätzel, M.; Nazeeruddin, M.K. Synthesis, characterization, and DFT/TDDFT calculations of highly phosphorescent blue light-emitting anionic iridium complexes. Inorg. Chem. 2008, 47, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Nazeeruddin, M.K.; Humphry-Baker, R.; Berner, D.; Rivier, S.; Zuppiroli, L.; Graetzel, M. Highly phosphorescence iridium complexes and their application in organic lightemitting devices. J. Am. Chem. Soc. 2003, 125, 8790–8797. [Google Scholar] [CrossRef] [PubMed]
- Baranoff, E.; Curchod, B.F.E.; Frey, J.; Scopelliti, R.; Kessler, F.; Tavernelli, I.; Rothlisberger, U.; Grätzel, M.; Nazeeruddin, M.K. Acid-induced degradation of phosphorescent dopants for OLEDs and its application to the synthesis of trisheteroleptic iridium(III) bis-cyclometalated complexes. Inorg. Chem. 2012, 51, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Artem’ev, A.V.; Pritchina, E.A.; Rakhmanova, M.I.; Gritsan, N.P.; Bagryanskaya, I.Y.; Malysheva, S.F.; Belogorlova, N.A. Alkyl-dependent self-assembly of the first red-emitting zwitterionic {Cu4I6} clusters from [alkyl-P(2-Py)3]+ salts and CuI: When size matters. Dalton Trans. 2019, 48, 2328–2337. [Google Scholar] [CrossRef]
- Kirakci, K.; Fejfarová, K.; Martinčík, J.; Nikl, M.; Lang, K. Tetranuclear copper (I) iodide complexes: A new class of X-ray phosphors. Inorg. Chem. 2017, 56, 4609–4614. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Duan, C.; Han, C.; Yang, H.; Wei, Y.; Xu, H. Balanced dual emissions from tridentate phosphine-coordinate copper(I) complexes toward highly efficient yellow OLEDs. Adv. Mater. 2016, 28, 5975–5979. [Google Scholar] [CrossRef] [PubMed]
- Ohara, H.; Ogawa, T.; Yoshida, M.; Kobayashi, A.; Kato, M. Reversible luminescent colour changes of mononuclear copper(I) complexes based on ligand exchange reactions by N-heteroaromatic vapours. Dalton Trans. 2017, 46, 3755–3760. [Google Scholar] [CrossRef] [PubMed]
- Ohara, H.; Kobayashi, A.; Kato, M. Simple and extremely efficient blue emitters based on mononuclear Cu(I)-halide complexes with delayed fluorescence. Dalton Trans. 2014, 43, 17317–17323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GOST. GOST 18309-2014 Water. Methods for Determination of Phosphorus-Containing Matters. 2016. Available online: https://docs.cntd.ru/document/1200115799 (accessed on 26 November 2021).
- GOST. GOST 4386-89. Drinking Water. Methods for Determination of Fluorides Mass Concentration. 2001. Available online: https://docs.cntd.ru/document/1200012569 (accessed on 26 November 2021).
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
Emission Source | Light Source | Calibration | CV | |||
---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |||
Co a | Laser (365 nm) | Ir(III) complexes c | 0.005 | 0.98 | 0.009 | 0.94 |
Co b | Laser (385 nm) | Cu(I) complexes d | 0.002 | 1 | 0.005 | 0.98 |
Co b | UV-flashlight | Cu(I) complexes d | 0.002 | 0.99 | 0.004 | 0.99 |
Cu a | Laser (365 nm) | Ir(III) complexes c | 0.002 | 1 | 0.003 | 0.99 |
Cu b | Laser (385 nm) | Cu(I) complexes d | 0.006 | 0.96 | 0.013 | 0.84 |
Cu b | UV-flashlight | Cu(I) complexes d | 0.003 | 0.99 | 0.004 | 0.98 |
PO43− | UV-flashlight | Cu(I) complex (9) | 0.006 | 1 | 0.031 | 0.99 |
F− | UV-flashlight | Cu(I) complex (10) | 0.020 | 0.97 | 0.029 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surkova, A.; Paderina, A.; Legin, A.; Grachova, E.; Kirsanov, D. Molecular Emitters as a Tunable Light Source for Optical Multisensor Systems. Chem. Proc. 2021, 5, 5. https://doi.org/10.3390/CSAC2021-10611
Surkova A, Paderina A, Legin A, Grachova E, Kirsanov D. Molecular Emitters as a Tunable Light Source for Optical Multisensor Systems. Chemistry Proceedings. 2021; 5(1):5. https://doi.org/10.3390/CSAC2021-10611
Chicago/Turabian StyleSurkova, Anastasiia, Aleksandra Paderina, Andrey Legin, Elena Grachova, and Dmitry Kirsanov. 2021. "Molecular Emitters as a Tunable Light Source for Optical Multisensor Systems" Chemistry Proceedings 5, no. 1: 5. https://doi.org/10.3390/CSAC2021-10611
APA StyleSurkova, A., Paderina, A., Legin, A., Grachova, E., & Kirsanov, D. (2021). Molecular Emitters as a Tunable Light Source for Optical Multisensor Systems. Chemistry Proceedings, 5(1), 5. https://doi.org/10.3390/CSAC2021-10611