Thermal Desorption of Explosives Vapour from Organic Fluorescent Sensors †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Film Characterisation
2.3. Explosives Vapours Sensing
3. Results and Discussion
3.1. Photophysical Characterisation
3.2. Fluorescence Quenching and Thermal Release of DNT from Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moore, D.S. Instrumentation for trace detection of high explosives. Rev. Sci. Instrum. 2004, 75, 2499–2512. [Google Scholar] [CrossRef]
- Wells, K.; Bradley, D.A. A review of X-ray explosives detection techniques for checked baggage. Appl. Radiat. Isot. 2012, 70, 1729–1746. [Google Scholar] [CrossRef] [Green Version]
- Perr, J.M.; Furton, K.G.; Almirall, J.R. Solid phase microextraction ion mobility spectrometer interface for explosive and taggant detection. J. Sep. Sci. 2005, 28, 177–183. [Google Scholar] [CrossRef]
- Singh, S.; Singh, M. Explosives detection systems (EDS) for aviation security. Signal Process. 2003, 83, 31–55. [Google Scholar] [CrossRef]
- Daniels, D.J. A review of GPR for landmine detection. Sens. Imaging Int. J. 2006, 7, 90–123. [Google Scholar] [CrossRef]
- Thomas, S.W.; Joly, G.D.; Swager, T.M. Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chem. Rev. 2007, 107, 1339–1386. [Google Scholar] [CrossRef] [PubMed]
- Swager, T.M.; Wosnick, J.H. Self-Amplifying Semiconducting Polymers for Chemical Sensors. MRS Bull. 2002, 27, 446–450. [Google Scholar] [CrossRef]
- Cumming, C.; Aker, C.; Fisher, M.; Fok, M.; La Grone, M.; Reust, D.; Rockley, M.; Swager, T.; Towers, E.; Williams, V. Using novel fluorescent polymers as sensory materials for above-ground sensing of chemical signature compounds emanating from buried landmines. IEEE Trans. Geosci. Remote. Sens. 2001, 39, 1119–1128. [Google Scholar] [CrossRef] [Green Version]
- Gillanders, R.N.; Samuel, I.D.; Turnbull, G.A. A low-cost, portable optical explosive-vapour sensor. Sens. Actuators B Chem. 2017, 245, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Caron, T.; Guillemot, M.; Montméat, P.; Veignal, F.; Perraut, F.; Prené, P.; Serein-Spirau, F. Ultra trace detection of explosives in air: Development of a portable fluorescent detector. Talanta 2010, 81, 543–548. [Google Scholar] [CrossRef]
- Rose, A.; Zhu, Z.; Madigan, C.F.; Swager, T.M.; Bulovic, V. Chemosensory lasing action for detection of TNT and other analytes. Organic Light Emitting Materials and Devices X. Proc. SPIE 2006, 6333, 63330Y. [Google Scholar] [CrossRef]
- Iii, S.W.T.; Amara, J.P.; Bjork, R.E.; Swager, T.M. Amplifying fluorescent polymer sensors for the explosives taggant 2,3-dimethyl-2,3-dinitrobutane (DMNB). Chem. Commun. 2005, 2005, 4572–4574. [Google Scholar] [CrossRef]
- Shaw, P.E.; Burn, P.L. Real-time fluorescence quenching-based detection of nitro-containing explosive vapours: What are the key processes? Phys. Chem. Chem. Phys. 2017, 19, 29714–29730. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Geng, Y.; Cavaye, H.; Burn, P.L.; Gentle, I.R.; Meredith, P.; Shaw, P.E. Molecular versus exciton diffusion in fluorescence-based explosive vapour sensors. Chem. Commun. 2015, 51, 17406–17409. [Google Scholar] [CrossRef]
- Bolse, N.; Eckstein, R.; Schend, M.; Habermehl, A.; Eschenbaum, C.; Hernandez-Sosa, G.; Lemmer, U. A digitally printed optoelectronic nose for the selective trace detection of nitroaromatic explosive vapours using fluorescence quenching. Flex. Print. Electron. 2017, 2, 024001. [Google Scholar] [CrossRef]
- Zhao, D.; Swager, T.M. Sensory Responses in Solution vs Solid State: A Fluorescence Quenching Study of Poly(iptycenebutadiynylene)s. Macromolecules 2005, 38, 9377–9384. [Google Scholar] [CrossRef]
- Shaw, P.E.; Cavaye, H.; Chen, S.S.Y.; James, M.; Gentle, I.R.; Burn, P.L. The binding and fluorescence quenching efficiency of nitroaromatic (explosive) vapors in fluorescent carbazole dendrimer thin films. Phys. Chem. Chem. Phys. 2013, 15, 9845–9853. [Google Scholar] [CrossRef]
- Tang, G.; Chen, S.S.Y.; Shaw, P.; Hegedűs, K.; Wang, X.; Burn, P.L.; Meredith, P. Fluorescent carbazole dendrimers for the detection of explosives. Polym. Chem. 2011, 2, 2360–2368. [Google Scholar] [CrossRef]
- Greenham, N.; Samuel, I.; Hayes, G.; Phillips, R.; Kessener, Y.; Moratti, S.; Holmes, A.; Friend, R. Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers. Chem. Phys. Lett. 1995, 241, 89–96. [Google Scholar] [CrossRef]
- Gillanders, R.N.; Glackin, J.M.; Filipi, J.; Kezic, N.; Samuel, I.D.; Turnbull, G.A. Preconcentration techniques for trace explosive sensing. Sci. Total. Environ. 2019, 658, 650–658. [Google Scholar] [CrossRef] [Green Version]
- Campbell, I.A.; Turnbull, G.A. A kinetic model of thin-film fluorescent sensors for strategies to enhance chemical selectivity. Phys. Chem. Chem. Phys. 2021, 23, 10791–10798. [Google Scholar] [CrossRef]
- Summers, M.A.; Buratto, S.K.; Edman, L. Morphology and environment-dependent fluorescence in blends containing a phenylenevinylene-conjugated polymer. Thin Solid Films 2007, 515, 8412–8418. [Google Scholar] [CrossRef]
- Burns, S.; MacLeod, J.; Do, T.T.; Sonar, P.; Yambem, S.D. Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs. Sci. Rep. 2017, 7, srep40805. [Google Scholar] [CrossRef] [Green Version]
- Gumyusenge, A.; Tran, D.T.; Luo, X.; Pitch, G.M.; Zhao, Y.; Jenkins, K.A.; Dunn, T.J.; Ayzner, A.L.; Savoie, B.M.; Mei, J. Semiconducting polymer blends that exhibit stable charge transport at high temperatures. Science 2018, 362, 1131–1134. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogugu, E.B.; Gillanders, R.N.; Turnbull, G.A. Thermal Desorption of Explosives Vapour from Organic Fluorescent Sensors. Chem. Proc. 2021, 5, 11. https://doi.org/10.3390/CSAC2021-10559
Ogugu EB, Gillanders RN, Turnbull GA. Thermal Desorption of Explosives Vapour from Organic Fluorescent Sensors. Chemistry Proceedings. 2021; 5(1):11. https://doi.org/10.3390/CSAC2021-10559
Chicago/Turabian StyleOgugu, Edward B., Ross N. Gillanders, and Graham A. Turnbull. 2021. "Thermal Desorption of Explosives Vapour from Organic Fluorescent Sensors" Chemistry Proceedings 5, no. 1: 11. https://doi.org/10.3390/CSAC2021-10559
APA StyleOgugu, E. B., Gillanders, R. N., & Turnbull, G. A. (2021). Thermal Desorption of Explosives Vapour from Organic Fluorescent Sensors. Chemistry Proceedings, 5(1), 11. https://doi.org/10.3390/CSAC2021-10559