Cumulative Cytotoxicity Assay of the Aqueous and Ethanolic Extracts of the Selected Medicinal Plants Using Crown Gall Tumor Disc Bioassay †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phytopathogenicity Test
2.2. Disc Bioassay Method
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lippincott, J.A.; Lippincott, B.B. The Genus Agrobacterium and Plant Tumorigenesis. Annu. Rev. Microbiol. 1975, 29, 377–405. [Google Scholar] [CrossRef] [PubMed]
- Braun, A.C. The Relevance of Plant Tumor Systems to an Understanding of the Basic Cellular Mechanisms Underlying Tumorigenesis1. Neuronal Act. Tumor Tissue 1972, 15, 165–187. [Google Scholar]
- Cloud, W. Stalking the wild crown-gall. In Readings in the Life Sciences Biology Anthology; Wilson, S., Roe, R., Eds.; West Publishing Co.: New York, NY, USA, 1974. [Google Scholar]
- Anand, V.K.; Heberlein, G.T. Crown-gall tumorigenesis in potato tumor tissue. Am. J. Bot. 1977, 64, 153–158. [Google Scholar] [CrossRef]
- Lippincott, J.A.; Heberlein, G.T. The quantitative determination of the infectivity of Agrobacterium tumefaciens. Am. J. Bot. 1965, 52, 863. [Google Scholar] [CrossRef]
- Islam, M.S.; Akhtar, M.M.; Parvez, M.S.; Alam, M.J. Antitumor and antibacterial activity of a crude methanol leaf extract of Vitex negundo L. Arch. Biol. Sci. 2013, 65, 229–238. [Google Scholar]
- Islam, M.S.; Akhtar, M.M.; Rahman, M.M.; Rahman, M.A.; Sarker, K.K.; Alam, M.F. Antitumor and phytotoxic activities of leaf methanol extract of Oldenlandia diffusa (Willd.) Roxb. Glob. J. Pharmacol. 2009, 3, 99–106. [Google Scholar]
- Srirama, R.; Ramesha, G.; Ravikanth, R.U.S.; Ganeshaiah, K.N. Are plants with anti-cancer activity resistant to crown gall? A test of hypothesis. Curr. Sci. 2007, 95, 10–25. [Google Scholar] [CrossRef]
- Kempf, V.A.J.; Hitziger, N.; Riess, T.; Autenrieth, I.B. Do plant and human pathogens have a common pathogenicity strategy? Trends Microbiol. 2002, 10, 269–275. [Google Scholar] [CrossRef]
- David, S.G. Plants as models for the study of human pathogenesis. Biotechnol. Adv. 2004, 22, 363–382. [Google Scholar]
- Jerry, L.M.; Lingling, L.R. The use of biological assays to evaluate botanicals. Drug Inf. J. 1998, 32, 513–524. [Google Scholar]
- Galsky, A.G.; Wilsey, J.P.; Powell, R.G. Crown gall tumor disc bioassay: A possible aid in the detection of compounds with antitumor activity. Plant Physiol. 1980, 65, 184–185. [Google Scholar] [CrossRef]
- Ferrigni, N.R.; Putnam, J.E.; Anderson, B.; Jacobsen, L.B.; Nichols, D.E.; Moore, D.S.; McLaughlin, J.L.; Powell, R.G.; Smith, C.R., Jr. Modification and evaluation of the potato disc assay and antitumor screening of Euphorbiacae seeds. J. Nat. Prod. 1982, 45, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Coker, P.S.; Radecke, J.; Guy, C.; Camper, N.D. Potato disc tumor induction assay: A multiple mode of drug action assay. Phytomedicine 2003, 10, 133–138. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, J.L. Crown gall tumors on potato discs and bine shrimp lethality: Two single bioassays for plant screening and fractionation. In Methods in Plant Biochemistry; Hostettmann, K., Ed.; Academic Press: London, UK, 1991. [Google Scholar]
- Jia, Z.; Tang, M.; Wu, J. The determination of flavanoid contents in mulberry and their scavenging effect on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar]
- Bondet, V.; Brand Williams, W.; Berset, C. Kinetics and Mechanisms of antioxidant activity using the DPPH free radical method. Lwt-Foodsci. Tech. 1997, 30, 609–615. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1999, 28, 25–30. [Google Scholar] [CrossRef]
- Kahl, G. Molecular biology of wound healing: The conditioning phenomenon. In Molecular Biology of Plant Tumors; Kahl, G., Schell, J.S., Eds.; Academic Press: New York, NY, USA, 1982; pp. 211–267. [Google Scholar]
- Islam, M.S.; Rahman, M.M.; Rahman, M.A.; Qayum, M.A.; Alam, M.F. In vitro evaluation of Croton bonplandianum Baill.as potential antitumor properties using Agrobacterium tumefaciens. J. Agric. Technol. 2010, 6, 79–86. [Google Scholar]
- Chen, F.C.; Hseu, S.H.; Hung, S.T.; Chen, M.C.; Lin, C.Y. Leaf, stem and crown galls on perennial asters caused by Agrobacterium tumefaciens in Taiwan. Bot. Bull. Acad. Sin. 1999, 40, 237–242. [Google Scholar]
- Aysan, Y.; Sahin, F.; Mirik, M.; Donmez, M.F.; Tekman, H. First report of crown gall of apricot (Prunus armeniaca) caused by Agrobacterium tumefaciens in Turkey. Plant Pathol. 2003, 52, 793–793. [Google Scholar] [CrossRef]
- Hussain, A.; Zia, M.; Mirza, B. Cytotoxic and antitumor potential of Fagonia cretica L. Turk. J. Biol. 2007, 31, 19–24. [Google Scholar]
- Glogowski, W.; Galsky, A.G. Agrobacterium tumefaciens site attachment as a necessary prerequisite for crown-gall tumor formation on potato discs. Plant. Physiol. 1978, 61, 1031–1033. [Google Scholar] [CrossRef] [PubMed]
- Lippincott, B.B.; Lippincott, J.A. Bacterial attachment to a specific wound site as an essential stage in tumor initiation by Agrobacterit n tumefaciens. J. Bacteriol. 1969, 97, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Turker, A.; Camper, N. Biological activity of Common Mullein, a medicinal plant. J. Ethnopharmacol. 2002, 82, 117–125. [Google Scholar] [CrossRef]
- Kahl, G.; Schell, J.S. Molecular Biology of Plant Tumors; Academic Press: Cambridge, MA, USA, 1982; pp. xix–xxi. ISBN 9780123943804. [Google Scholar] [CrossRef]
Plant Extracts | Mean Number of Tumors (Mean ± SE) | ||
---|---|---|---|
Concentrations | 1 mg/mL | 10 mg/mL | 50 mg/mL |
Control (Distilled water) | 0.0 | 0.0 | 0.0 |
Control (DMSO) | 18.66 ± 2.25 | 21.33 ± 2.28 | 23.33 ± 1.85 |
Standard (Colchicine) | 9.66 ± 1.90 | 11.33 ± 0.78 | 14.33 ± 1.13 |
Annona reticulate (Alcoholic extracts) | 9.00 ± 0.33 | 11.67 ± 0.87 | 14.67 ± 0.62 |
Annona reticulate (Aqueous extract) | 7.33 ± 0.11 | 8.67 ± 0.40 | 9.33 ± 0.62 |
Allium sativum (Alcoholic) | 8.33 ± 0.11 | 11.67 ± 0.59 | 15.00 ± 0.67 |
Allium sativum (Aqueous extract) | 6.00 ± 0.58 | 7.33 ± 0.87 | 9.33 ± 0.29 |
Allium fistolisum (Alcoholic extracts) | 9.00 ± 0.58 | 8.67 ± 0.95 | 11.00 ± 1.20 |
Allium fistolisum (Aqueous extract) | 9.00 ± 1.20 | 10.67 ± 0.95 | 13.67 ± 0.87 |
Brassica oleraceae (Alcoholic extracts) | 7.00 ± 0.33 | 12.33 ± 1.18 | 14.33 ± 0.11 |
Brassica oleraceae (Aqueous extract) | 8.66 ± 0.62 | 1.00 ± 0.67 | 13.33 ± 0.73 |
Annona reticulate and Allium sativum (1:1) Alcoholic extracts | 13.00 ± 1.20 | 16.00 ± 1.20 | 20.33 ± 1.74 |
Annona reticulate and Allium sativum (1:1) Aqueous extracts | 6.66 ± 0.87 | 8.33 ± 0.59 | 10.33 ± 0.91 |
Allium fistolisum and Annona reticulate (Alcoholic extracts) | 12.00 ± 0.58 | 14.67 ± 0.97 | 15.67 ± 1.24 |
Allium fistolisum and Annona reticulate (Aqueous extract) | 9.00 ± 0.33 | 11.67 ± 0.80 | 12.67 ± 0.48 |
Brassica oleraceae and Annona reticulate (Alcoholic extracts) | 5.66 ± 0.29 | 8.33 ± 0.87 | 9.33 ± 0.48 |
Brassica oleraceae and Annona reticulata (Aqueous extract) | 5.33 ± 0.62 | 6.67 ± 0.91 | 7.67 ± 1.24 |
Plant Extracts | % Inhibition of Tumors When Compared with Control | ||
---|---|---|---|
Concentrations | 1 mg/mL | 10 mg/mL | 50 mg/mL |
Standard (Colchicine) | 51.78 | 53.13 | 61.44 |
Annona reticulate (Alcoholic extracts) | 48.21 | 54.70 | 62.87 |
Annona reticulate (Aqueous extract) | 39.28 | 40.63 | 41.43 |
Allium sativum (Alcoholic) | 44.63 | 54.70 | 64.29 |
Allium sativum (Aqueous extract) | 32.14 | 34.38 | 40.01 |
Allium fistolisum (Alcoholic extracts) | 48.21 | 51.57 | 54.29 |
Allium fistolisum (Aqueous extract) | 48.21 | 50.01 | 58.58 |
Brassica oleraceae (Alcoholic extracts) | 37.49 | 57.82 | 61.44 |
Brassica oleraceae (Aqueous extract) | 46.42 | 46.88 | 57.15 |
Annona reticulate and Allium sativum (1:1) Alcoholic extracts | 69.63 | 75.01 | 87.16 |
Annona reticulate and Allium sativum (1:1) Aqueous extracts | 35.71 | 39.07 | 44.29 |
Allium fistolisum and Annona reticulate (Alcoholic extracts) | 64.27 | 68.76 | 67.15 |
Allium fistolisum and Annona reticulate (Aqueous extract) | 48.21 | 54.70 | 54.29 |
Brassica oleraceae and Annona reticulate (Alcoholic extracts) | 30.35 | 39.07 | 40.01 |
Brassica oleraceae and Annona reticulata (Aqueous extract) | 28.57 | 31.25 | 32.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waghulde, S.; Gorde, N.; Baviskar, T.; Patil, P.; Singh, S.; Kale, M.K.; Patil, V.R. Cumulative Cytotoxicity Assay of the Aqueous and Ethanolic Extracts of the Selected Medicinal Plants Using Crown Gall Tumor Disc Bioassay. Chem. Proc. 2021, 3, 136. https://doi.org/10.3390/ecsoc-24-08297
Waghulde S, Gorde N, Baviskar T, Patil P, Singh S, Kale MK, Patil VR. Cumulative Cytotoxicity Assay of the Aqueous and Ethanolic Extracts of the Selected Medicinal Plants Using Crown Gall Tumor Disc Bioassay. Chemistry Proceedings. 2021; 3(1):136. https://doi.org/10.3390/ecsoc-24-08297
Chicago/Turabian StyleWaghulde, Sandeep, Nilesh Gorde, Tushar Baviskar, Praful Patil, Shweta Singh, Mohan K. Kale, and Vijay R. Patil. 2021. "Cumulative Cytotoxicity Assay of the Aqueous and Ethanolic Extracts of the Selected Medicinal Plants Using Crown Gall Tumor Disc Bioassay" Chemistry Proceedings 3, no. 1: 136. https://doi.org/10.3390/ecsoc-24-08297
APA StyleWaghulde, S., Gorde, N., Baviskar, T., Patil, P., Singh, S., Kale, M. K., & Patil, V. R. (2021). Cumulative Cytotoxicity Assay of the Aqueous and Ethanolic Extracts of the Selected Medicinal Plants Using Crown Gall Tumor Disc Bioassay. Chemistry Proceedings, 3(1), 136. https://doi.org/10.3390/ecsoc-24-08297