Functional Insights into the Active Site of Purified Seed Acid Phosphatase AP-I from Erythrina indica: Role of Key Amino Acid Residues †
Abstract
1. Introduction
2. Materials
3. Methods
3.1. Acid Phosphatase Assay
3.2. Protein Estimation
3.3. Fluorescence Measurements
3.4. Chemical Modification Studies
3.5. Modification of Tryptophan Residues
3.6. Detection of Carboxylate Residues
3.7. Modification of Carboxylate and Serine Residues
3.8. Determination of Tryptophan Environment
3.9. Estimation of Surface and Buried Tryptophan Residues
3.10. Thermal and Chemical Denaturation Studies
4. Results and Discussion
4.1. pH Dependence of AP-I Activity
4.2. Substrate Protection Studies
4.3. Kinetics of Partially Modified Enzyme
4.4. Modification of Carboxylate Residue
4.5. Fluorescence Measurements
4.6. Determination of Tryptophan Environment by Quenching Experiments
4.7. Thermal and Chemical Denaturation Studies
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, B.S.; Prasad, D.N.; Sandhya, S.; Rao, K.N.V.; Banji, D. Cultivation, phytochemistry, pharmacological actions and therapeutic applications of Erythrina indica Lam. Int. J. Appl. Biol. Pharm. Technol. 2010, 1, 858–863. [Google Scholar]
- Avhad, S.; Tiwari, K.; Ushir, Y.V. Ethnobotanical studies of Erythrina indica plants. Int. J. Pharmacogn. Phytochem. Outlook (IJPO) 2019, 1, 67–70. [Google Scholar]
- Haque, R.; Ali, M.S.; Saha, A.; Alimuzzaman, M. Analgesic activity of methanolic extract of the leaf of Erythrina variegata. Dhaka Univ. J. Pharm. Sci. 2006, 5, 77–79. [Google Scholar] [CrossRef]
- Konozy, E.H.E.; Mulay, R.; Faca, V.; Ward, R.J.; Greene, L.J.; Roque-Barriera, M.C.; Sabharwal, S.; Bhide, S.V. Purification, Some Properties of a D-Galactose-Binding Leaf Lectin from Erythrina indica and Further Characterization of Seed Lectin. Biochimie 2002, 84, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Kestwal, R.M.; Bhide, S.V. Purification of β-galactosidase from Erythrina indica: Involvement of tryptophan in the active site. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2007, 1770, 1506–1512. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.; Kahandal, A.; Kanagare, A.; Kulkarni, A.; Tagad, C.K. The multifaceted nature of plant acid phosphatases: Purification, biochemical features, and applications. J. Enzym. Inhib. Med. Chem. 2023, 38, 2282379. [Google Scholar] [CrossRef] [PubMed]
- Fraser, L.; Wysocki, P.; Ciereszko, A.; Plucienniczak, G.; Kotlowska, M.; Kordan, W.; Wojtczak, M.; Dietrich, G.; Strezezek, J. Application of biochemical markers for identification of biological properties of animal semen. Reprod. Biol. 2006, 6, 5–20. [Google Scholar] [PubMed]
- Campbell, H.D.; Dionysius, D.A.; Keough, D.T.; Wilson, B.E.; de Jersey, J.; Zerner, B. Containing Acid-Phosphatases—Comparison of Enzymes from Beef Spleen and Pig Allantoic Fluid. Biochem. Biophys. Res. Commun. 1978, 82, 615. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Roseborough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagen. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Fossum, C.J.; Johnson, B.O.V.; Golde, S.T.; Kielman, A.J.; Finke, B.; Smith, M.A.; Lowater, H.R.; Laatsch, B.F.; Bhattacharyya, S.; Hati, S. Insights into the mechanism of tryptophan fluorescence quenching due to synthetic crowding agents: A combined experimental and computational study. ACS Omega 2023, 8, 44820–44830. [Google Scholar] [CrossRef] [PubMed]
- Granjeiro, P.; Ferreira, C.V.; Cavagis, A.; Granjeiro, J. Essential sufhydryl groups in the active site of castor bean (Ricinus communis) seed acid phosphatase. Plant Sci. 2003, 164, 629–633. [Google Scholar] [CrossRef]
- Jana, S.; Chaudhuri, T.K.; Deb, J.K. Effects of guanidine hydrochloride on the conformation and enzyme activity of streptomycin adenylyltransferase monitored by circular dichroism and fluorescence spectroscopy. Biochemistry 2006, 71, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, Y.; Kawabe, H.; Tanaka, H.; Fujimoto, S.; Ohara, A. Purification, enzymatic properties, and active site environment of a novel manganese(III)-containing acid phosphatase. J. Biol. Chem. 1981, 256, 10664–10670. [Google Scholar] [CrossRef] [PubMed]
- Antonyuk, S.V.; Olczak, M.; Olczak, T.; Ciuraszkiewicz, J.; Strange, R.W. The structure of a purple acid phosphatase involved in plant growth and pathogen defence exhibits a novel immunoglobulin-like fold. IUCrJ 2014, 1, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.W.; Hoffman, A.D.; Swintek, J.A.; Droge, S.T.J.; Fitzsimmons, P.N. Addition of phenylmethylsulfonyl fluoride increases the working lifetime of the trout liver S9 substrate depletion assay resulting in improved detection of low intrinsic clearance rates. Environ. Toxicol. Chem. 2020, 40, 148–161. [Google Scholar] [CrossRef] [PubMed]
- Uzgare, A.S.; Bhide, A. Purification and partial characterization of two forms of acid phosphatase from seeds of Erythrina indica. Res. J. Chem. Environ. 2021, 25, 125–130. Available online: https://worldresearchersassociations.com/Archives/RJCE/Vol(25)2021/March%202021/Purification%20and%20partial%20characterization%20of%20two%20forms.pdf (accessed on 9 December 2025).









| Reagents (5 mM) | Amino Acid Modified | % Relative Activity (AP-I) (Minor Form) |
|---|---|---|
| NBS | Tryptophan | 0.0 |
| PMSF | Serine | 0.0 |
| DTNB | Cysteine | 97.00 |
| PG | Argenine | 97.00 |
| NAI | Tyrosine | 95.00 |
| DEPC | Histidine | 92.38 |
| DCHC | Carboxylate | 09.00 |
| (1) For Tryptophan residue | |
| Control | % Activity of AP-I |
| Enz. + Sub. | 100 |
| Enz. + 20 mM NBS | 29 |
| Enz. + 2 mM Sub. + NBS | 83 |
| (2) For Serine residue | |
| Control | % Activity of AP-I |
| Enz. + Sub. | 100 |
| Enz. + 5 mM PMSF | 27 |
| Enz.+ 2 mM Sub. + PMSF | 76 |
| (3) For Carboxylate residue | |
| Control | % Activity of AP-I |
| Enz. + Sub. | 100 |
| Enz. + 1 mM DCHC | 37 |
| Enz.+ 2 mM Sub. + DCHC | 87 |
| Residue Modified | Reagent Used | Km (mM) | Vmax (Units) |
|---|---|---|---|
| None | Unmodified | 86.95 | 7.40 |
| Carboxylate | DCHC | 80.00 | 6.25 |
| Tryptophan | NBS | 83.30 | 5.30 |
| Serine | PMSF | 87.42 | 4.00 |
| Constants | AP-I |
|---|---|
| Using acrylamide | |
| Kq | 22.00 |
| Fa | 0.99 |
| Using cesium chloride | |
| Kq | 27.00 |
| Fa | 0.99 |
| Using potassium iodide | |
| Kq | 91.00 |
| Fa | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzgare, A.S. Functional Insights into the Active Site of Purified Seed Acid Phosphatase AP-I from Erythrina indica: Role of Key Amino Acid Residues. Chem. Proc. 2025, 18, 85. https://doi.org/10.3390/ecsoc-29-26685
Uzgare AS. Functional Insights into the Active Site of Purified Seed Acid Phosphatase AP-I from Erythrina indica: Role of Key Amino Acid Residues. Chemistry Proceedings. 2025; 18(1):85. https://doi.org/10.3390/ecsoc-29-26685
Chicago/Turabian StyleUzgare, Ashish Sambhaji. 2025. "Functional Insights into the Active Site of Purified Seed Acid Phosphatase AP-I from Erythrina indica: Role of Key Amino Acid Residues" Chemistry Proceedings 18, no. 1: 85. https://doi.org/10.3390/ecsoc-29-26685
APA StyleUzgare, A. S. (2025). Functional Insights into the Active Site of Purified Seed Acid Phosphatase AP-I from Erythrina indica: Role of Key Amino Acid Residues. Chemistry Proceedings, 18(1), 85. https://doi.org/10.3390/ecsoc-29-26685
