Application and Synthesis of a New Hybrid Heterocyclic Derivative with Antioxidant Evaluation †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Used
2.2. Statistical Analysis
2.3. Methods
2.3.1. Ligand Preparation
2.3.2. Targets Preparation
2.3.3. Synthesis of Compounds
3. Results and Discussion
3.1. Docking Study
3.2. Pharmacokinetic Study
3.3. Antioxidant Evaluation
Estimation of DPPH Free Radical Scavenging Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Verma, S.; Lal, S.; Narang, R.; Sudhakar, K. Quinoline Hydrazide/Hydrazone Derivatives: Recent Insights on Antibacterial Activity and Mechanism of Action. ChemMedChem 2023, 18, e202200571. [Google Scholar] [CrossRef]
- Fan, M.; Yang, W.; Liu, L.; Peng, Z.; He, Y.; Wang, G. Design, synthesis, biological evaluation, and docking study of chromone-based phenylhydrazone and benzoylhydrazone derivatives as antidiabetic agents targeting α-glucosidase. Bioorg. Chem. 2023, 132, 106384. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Ji, R.; Wang, H.; Li, S.; Zhang, G. Discovery of Novel α-Aminophosphonates with Hydrazone as Potential Antiviral Agents Combined With Active Fragment and Molecular Docking. Front. Chem. 2022, 10, 911453. [Google Scholar] [CrossRef] [PubMed]
- Katariya, K.D.; Shah, S.R.; Reddy, D. Anticancer, antimicrobial activities of quinoline based hydrazone analogues: Synthesis, characterization and molecular docking. Bioorg. Chem. 2020, 94, 103406. [Google Scholar] [CrossRef] [PubMed]
- Şenkardeş, S.; İhsan Han, M.; Gürboğa, M.; Özakpinar, Ö.B.; Küçükgüzel, Ş.G. Synthesis and anticancer activity of novel hydrazone linkage-based aryl sulfonate derivatives as apoptosis inducers. Med. Chem. Res. 2022, 31, 368–379. [Google Scholar] [CrossRef]
- Baier, A.; Kokel, A.; Horton, W.; Gizińska, E.; Pandey, G.; Szyszka, R.; Török, B.; Török, M. Organofluorine Hydrazone Derivatives as Multifunctional Anti-Alzheimer’s Agents with CK2 Inhibitory and Antioxidant Features. ChemMedChem 2021, 16, 1927–1932. [Google Scholar] [CrossRef] [PubMed]
- Belkheiri, N.; Bouguerne, B.; Bedos-Belval, F.; Duran, H.; Bernis, C.; Salvayre, R.; Nègre-Salvayre, A.; Baltas, M. Synthesis and antioxidant activity evaluation of a syringic hydrazones family. Eur. J. Med. Chem. 2010, 45, 3019–3026. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.S.; Ge, Y.X.; Cheng, Z.Q.; Song, J.L.; Wang, Y.Y.; Zhu, K.; Zhang, H. Discovery of new multifunctional selective acetylcholinesterase inhibitors: Structure-based virtual screening and biological evaluation. J. Comput. Aided Mol. Des. 2019, 33, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Sana, S.; Reddy, V.G.; Reddy, T.S.; Tokala, R.; Kumar, R.; Bhargava, S.K.; Shankaraiah, N. Cinnamide derived pyrimidine-benzimidazole hybrids as tubulin inhibitors: Synthesis, in silico and cell growth inhibition studies. Bioorg. Chem. 2021, 110, 104765. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant determinations by the use of a stable Free Radical. Nature 1958, 4617, 1119–1200. [Google Scholar] [CrossRef]
Entries | Lipinski’s Rules | Veber’s Rules | BBB | AMES Toxic | Carcinogenic | P-Glycoprotein Inhibitor |
---|---|---|---|---|---|---|
A1 | + | + | + | − | − | − |
A2 | + | + | + | − | − | − |
Concentration (µg/mL) | 1.5625 | 3.125 | 6.25 | 12.5 | 25 | 50 | 100 | IC50 (µg/mL) |
BHA | 21.47 ± 0.27 | 34.28 ± 0.27 | 47.49 ± 0.27 | 71.09 ± 0.20 | 87.08 ± 0.18 | 89.56 ± 0.18 | 91.21 ± 0.10 | 7.18 ± 0.17 |
Concentration (µg/mL) | 31.25 | 62.5 | 125 | 250 | 500 | 1000 | 2000 | / |
A1 | 17.94 ± 0.27 | 36.87 ± 0.57 | 43.95 ± 0.45 | 60.65 ± 0.27 | 80.29 ± 0.27 | 91.98 ± 0.57 | 92.98 ± 0.10 | 168.06 ± 2.92 |
Concentration (µg/mL) | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 | / |
A2 | 4.01 ± 0.91 | 7.49 ± 0.84 | 12.15 ± 0.67 | 16.87 ± 0.45 | 24.78 ± 0.47 | 63.54 ± 1.42 | 81.65 ± 0.62 | 3902.15 ± 40.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ait Belkacem, A.; Djaafarou, R.; Rabhi, S. Application and Synthesis of a New Hybrid Heterocyclic Derivative with Antioxidant Evaluation. Chem. Proc. 2024, 16, 108. https://doi.org/10.3390/ecsoc-28-20125
Ait Belkacem A, Djaafarou R, Rabhi S. Application and Synthesis of a New Hybrid Heterocyclic Derivative with Antioxidant Evaluation. Chemistry Proceedings. 2024; 16(1):108. https://doi.org/10.3390/ecsoc-28-20125
Chicago/Turabian StyleAit Belkacem, Amira, Roumaissa Djaafarou, and Selma Rabhi. 2024. "Application and Synthesis of a New Hybrid Heterocyclic Derivative with Antioxidant Evaluation" Chemistry Proceedings 16, no. 1: 108. https://doi.org/10.3390/ecsoc-28-20125
APA StyleAit Belkacem, A., Djaafarou, R., & Rabhi, S. (2024). Application and Synthesis of a New Hybrid Heterocyclic Derivative with Antioxidant Evaluation. Chemistry Proceedings, 16(1), 108. https://doi.org/10.3390/ecsoc-28-20125