In Silico Pharmacological Prediction of Substituted Aminonitriles †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecules
2.2. Preparation of SMILE Codes
2.3. Analysis of Pharmacokinetic Parameters and Biological Targets
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brogi, S.; Ramalho, T.C.; Kuca, K.; Medina-Franco, J.L.; Valko, M. In silico methods for drug design and discovery. Front. Chem. 2020, 8, 612. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, M. Science and engineering in silico. Adv. J. Sci. Eng. 2020, 1, 1–2. [Google Scholar]
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- De Souza Neto, L.R.; Moreira-Filho, J.T.; Neves, B.J.; Maidana, R.L.B.R.; Guimarães, A.C.R.; Furnham, N.; Silva, F.P., Jr. In silico strategies to support fragment-to-lead optimization in drug discovery. Front. Chem. 2020, 8, 93. [Google Scholar] [CrossRef]
- Grundke, C.; Vierengel, N.; Opatz, T. Aminonitriles: From Sustainable Preparation to Applications in Natural Product Synthesis. Chem. Rec. 2020, 20, 989–1016. [Google Scholar] [CrossRef] [PubMed]
- Durán-Iturbide, N.A.; Díaz-Eufracio, B.I.; Medina-Franco, J.L. In silico ADME/Tox profiling of natural products: A focus on BIOFACQUIM. ACS Omega 2020, 5, 16076–16084. [Google Scholar] [CrossRef]
- BIOVIA, Dassault Systèmes. BIOVIA Discovery Studio Visualizer; Dassault Systèmes: San Diego, CA, USA, 2020. [Google Scholar]
- Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef]
- Gupta, A.; Aniyery, R.B.; Pathak, A. In silico pharmacological and in vitro biological study of novel organotinsorbate. Int. J. Pharm. Sci. Res. 2017, 8, 4201–4212. [Google Scholar]
- Ursu, O.; Oprea, T.I. Model-free drug-likeness from fragments. J. Chem. Inf. Model. 2010, 50, 1387–1394. [Google Scholar] [CrossRef]
- Ursu, O.; Rayan, A.; Goldblum, A.; Oprea, T.I. Understanding drug-likeness. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 760–781. [Google Scholar] [CrossRef]
- Musa, A.; Elmaidomy, A.H.; Sayed, A.M.; Alzarea, S.I.; Al-Sanea, M.M.; Mostafa, E.M.; Abdelmohsen, U.R. Cytotoxic potential, metabolic profiling, and liposomes of Coscinoderma sp. crude extract supported by in silico analysis. Int. J. Nanomed. 2021, 16, 3861. [Google Scholar] [CrossRef]
- Santana de Oliveira, M.; Pereira da Silva, V.M.; Cantao Freitas, L.; Gomes Silva, S.; Nevez Cruz, J.; de Aguiar Andrade, E.H. Extraction yield, chemical composition, preliminary toxicity of bignonia nocturna (bignoniaceae) essential oil and in silico evaluation of the interaction. Chem. Biodivers. 2021, 18, e2000982. [Google Scholar] [CrossRef] [PubMed]
- Husain, A.; Ahmad, A.; Khan, S.A.; Asif, M.; Bhutani, R.; Al-Abbasi, F.A. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents. Saudi Pharm. J. 2016, 24, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Tetko, I.V. Computing chemistry on the web. Drug Discov. Today 2005, 10, 1497–1499. [Google Scholar] [CrossRef] [PubMed]
- Latorraca, N.R.; Venkatakrishnan, A.J.; Dror, R.O. GPCR dynamics: Structures in motion. Chem. Rev. 2017, 117, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.V.; Horta, B.A.; Alencastro, R.B.D.; Pinto, A.C. Proteínas quinases: Características estruturais e inibidores químicos. Química Nova 2009, 32, 453–462. [Google Scholar] [CrossRef]
- Porto, L.A.; Siqueira, J.D.S.; Seixas, L.N.; Almeida, J.R.G.D.S.; Quintans-Júnior, L.J. O papel dos canais iônicos nas epilepsias e considerações sobre as drogas antiepilépticas: Uma breve revisão. J. Epilepsy Clin. Neurophysiol. 2007, 13, 169–175. [Google Scholar] [CrossRef]
- Nadal, S.R.; Manzione, C.R.; Horta, S.H.C.; Galväo, V.D.M. Comparaçäo das doenças perianais nos doentes HIV+ antes e depois da introduçäo dos inibidores da protease. Rev. Bras. Colo-Proctol 2001, 21, 5–8. [Google Scholar]
- De Souza, P.C.T. Modelagem Molecular de Receptores Nucleares: Estrutura, Dinâmica e Interação com Ligantes. Doctoral Thesis, UNICAMP, Campinas, Brazil, 2013. [Google Scholar]
Compound | Physicochemical Properties 1 | |||||
---|---|---|---|---|---|---|
TPSA | nON | MlogP | Nv | nROTB | Vol | |
HAN-1 | 35.82 | 2 | 3.16 | 0 | 3 | 201.54 |
HAN-2 | 35.82 | 2 | 3.61 | 0 | 3 | 218.10 |
HAN-3 | 45.05 | 3 | 3.22 | 0 | 4 | 227.09 |
HAN-4 | 35.82 | 2 | 4.67 | 0 | 4 | 251.49 |
HAN-5 | 35.82 | 2 | 3.84 | 0 | 3 | 215.08 |
HAN-6 | 65.28 | 4 | 2.50 | 0 | 4 | 235.10 |
HAN-7 | 35.82 | 2 | 4.06 | 0 | 3 | 234.66 |
HAN-8 | 45.05 | 3 | 4.04 | 0 | 5 | 260.45 |
Compound | “Drug-Likeness” a | |||||
---|---|---|---|---|---|---|
GPCRL | ICM | KI | NRL | PI | EI | |
HAN-1 | −0.50 | −0.48 | − 0.54 | −0.80 | −0.59 | −0.49 |
HAN-2 | −0.48 | −0.54 | −0.51 | −0.73 | −0.58 | −0.52 |
HAN-3 | −0.40 | −0.51 | −0.42 | −0.61 | −0.49 | −0.45 |
HAN-4 | −0.27 | −0.39 | −0.35 | −0.43 | −0.35 | −0.33 |
HAN-5 | −0.42 | −0.44 | −0.47 | −0.72 | −0.56 | −0.48 |
HAN-6 | −0.30 | −0.45 | −0.30 | −0.46 | −0.45 | −0.34 |
HAN-7 | −0.40 | −0.50 | −0.42 | −0.62 | −0.49 | −0.45 |
HAN-8 | −0.38 | −0.56 | −0.41 | −0.46 | −0.45 | −0.48 |
Compound | Parameters for Bioavailability Assessment 1 | ||||
---|---|---|---|---|---|
TPSA | nDLH | nALH | Da | cLogP | |
HAN-1 | 35.82 | 1 | 2 | 208.26 | 3.16 |
HAN-2 | 35.82 | 1 | 2 | 222.29 | 3.61 |
HAN-3 | 45.05 | 1 | 3 | 238.29 | 3.22 |
HAN-4 | 35.82 | 1 | 2 | 250.34 | 4.67 |
HAN-5 | 35.82 | 1 | 2 | 242.71 | 3.84 |
HAN-6 | 65.28 | 2 | 4 | 254.29 | 2.50 |
HAN-7 | 35.82 | 1 | 2 | 236.32 | 4.06 |
HAN-8 | 45.05 | 1 | 3 | 266.34 | 4.04 |
Standard of the “Rule of the five” Lipinski | ≤140 | ≤5 | ≤10 | ≤500 | ≤5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veras, B.A.F.; Huanca, P.I.J.; de Sousa Oliveira, I.; Maia, R.T.; da Silva Souza, H.D.; Ferreira, S.B. In Silico Pharmacological Prediction of Substituted Aminonitriles. Chem. Proc. 2023, 14, 29. https://doi.org/10.3390/ecsoc-27-16178
Veras BAF, Huanca PIJ, de Sousa Oliveira I, Maia RT, da Silva Souza HD, Ferreira SB. In Silico Pharmacological Prediction of Substituted Aminonitriles. Chemistry Proceedings. 2023; 14(1):29. https://doi.org/10.3390/ecsoc-27-16178
Chicago/Turabian StyleVeras, Bianca Araújo Fernandes, Pamela Isabel Japura Huanca, Igor de Sousa Oliveira, Rafael Trindade Maia, Helivaldo Diogenes da Silva Souza, and Sávio Benvindo Ferreira. 2023. "In Silico Pharmacological Prediction of Substituted Aminonitriles" Chemistry Proceedings 14, no. 1: 29. https://doi.org/10.3390/ecsoc-27-16178
APA StyleVeras, B. A. F., Huanca, P. I. J., de Sousa Oliveira, I., Maia, R. T., da Silva Souza, H. D., & Ferreira, S. B. (2023). In Silico Pharmacological Prediction of Substituted Aminonitriles. Chemistry Proceedings, 14(1), 29. https://doi.org/10.3390/ecsoc-27-16178