Synthesis, Characterization and Biological Activity of Hydrazones and Their Copper(II) Complexes †
Abstract
:1. Introduction
2. Medicinal Chemistry of Copper(II) Complexes
2.1. Physiological Role of Copper
2.2. Biological Activity of Copper(II) Complexes
2.3. Copper(II) Complexes with Existing Drugs
2.4. Biologically Active Hydrazones as Ligands for Copper(II) Complexes
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Brewer, G.J. The risks of copper toxicity contributing to cognitive decline in the aging population and to Alzheimer’s disease. J. Am. Coll. Nutr. 2009, 28, 238–242. [Google Scholar] [CrossRef]
- Wehbe, M.; Leung, A.W.Y.; Abrams, M.J.; Orvig, C.; Bally, M.B. A Perspective—Can copper complexes be developed as a novel class of therapeutics? Dalton Trans. 2017, 46, 10758–10773. [Google Scholar] [CrossRef] [PubMed]
- Iakovidis, I.; Delimaris, I.; Piperakis, S.M. Copper and Its Complexes in Medicine: A Biochemical Approach. Mol. Biol. Int. 2011, 2011, 594529. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, X.; Zhang, Q.; Yang, Z. Oxidative damage to DNA by 1,10-phenanthroline/L-threonine copper (II) complexes with chlorogenic acid. BioMetals 2010, 23, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Gaetke, L.M.; Chow, C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Krasnovskaya, O.; Naumov, A.; Guk, D.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Copper Coordination Compounds as Biologically Active Agents. Int. J. Mol. Sci. 2020, 21, 3965. [Google Scholar] [CrossRef] [PubMed]
- Duncan, C.; White, A.R. Copper complexes as therapeutic agents. Metallomics 2012, 4, 127–138. [Google Scholar] [CrossRef]
- Živec, P.; Perdih, F.; Turel, I.; Giester, G.; Psomas, G. Different types of copper complexes with the quinolone antimicrobial drugs ofloxacin and norfloxacin: Structure, DNA- and albumin-binding. J. Inorg. Biochem. 2012, 117, 35–47. [Google Scholar] [CrossRef]
- Szczepanik, W.; Kaczmarek, P.; Jeżowska-Bojczuk, M. Oxidative Activity of Copper(II) Complexes with Aminoglycoside Antibiotics as Implication to the Toxicity of These Drugs. Bioinorg. Chem. Appl. 2004, 2, 55–68. [Google Scholar] [CrossRef]
- Silva, P.P.; Guerra, W.; Silveira, J.N.; Ferreira, A.M.C.; Bortolotto, T.; Fischer, F.L.; Terenzi, H.; Neves, A.; Pereira-Maia, E.C. Two New Ternary Complexes of Copper(II) with Tetracycline or Doxycycline and 1,10-Phenanthroline and Their Potential as Antitumoral: Cytotoxicity and DNA Cleavage. Inorg. Chem. 2011, 50, 6414–6424. [Google Scholar] [CrossRef]
- Djoko, K.Y.; Achard, M.E.S.; Phan, M.D.; Lo, A.W.; Miraula, M.; Prombhul, S.; Hancock, S.J.; Peters, K.M.; Sidjabat, H.E.; Harris, P.N.; et al. Copper Ions and Coordination Complexes as Novel Carbapenem Adjuvants. Antimicrob. Agents Chemother. 2018, 62, e02280-17. [Google Scholar] [CrossRef] [PubMed]
- Devereux, M.; McCann, M.; Shea, D.O.; Kelly, R.; Egan, D.; Deegan, C.; Kavanagh, K.; McKee, V.; Finn, G. Synthesis, antimicrobial activity and chemotherapeutic potential of inorganic derivatives of 2-(4′-thiazolyl)benzimidazole[thiabendazole]: X-ray crystal structures of [Cu(TBZH)2Cl]Cl.H2O.EtOH and TBZH2NO3 (TBZH=thiabendazole). J. Inorg. Biochem. 2004, 98, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Moncol, J.; Kaliňáková, B.; Svorec, J.; Kleinova, M.; Koman, M.; Hudecova, D.; Melník, M.; Mazur, M.; Valko, M. Spectral properties and bio-activity of copper(II) clofibriates, part III: Crystal structure of Cu(clofibriate)2(2-pyridylmethanol)2, Cu(clofibriate)2(4-pyridylmethanol)2(H2O) dihydrate, and Cu2(clofibriate)4(N,N-diethylnicotinamide)2. Inorg. Chim. Acta 2004, 357, 3211–3222. [Google Scholar] [CrossRef]
- Simó, B.; Perelló, L.; Ortiz, R.; Castiñeiras, A.; Latorre, J.; Cantón, E. Interactions of metal ions with a 2,4-diaminopyrimidine derivative (trimethoprim). Antibacterial studies. J. Inorg. Biochem. 2000, 8, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Kheirolomoom, A.; Mahakian, L.M.; Lai, C.Y.; Lindfors, H.A.; Seo, J.W.; Paoli, E.E.; Watson, K.D.; Haynam, E.M.; Ingham, E.S.; Xing, L.; et al. Copper−Doxorubicin as a Nanoparticle Cargo Retains Efficacy with Minimal Toxicity. Mol. Pharm. 2010, 7, 1948–1958. [Google Scholar] [CrossRef]
- Herrero, L.A.; Cerro-Garrido, J.C.; Terrón-Homar, A. A calorimetric study of 3d metal ions-acyclovir interactions. The 2-hydroxyethoxymethyl group of acyclovir mimics the role of ribose in deoxy-guanosine and guanosine promoting the coordination through N(7). J. Inorg. Biochem. 2001, 86, 677–680. [Google Scholar] [CrossRef]
- Pellei, M.; Gandin, V.; Cimarelli, C.; Quaglia, W.; Mosca, N.; Bagnarelli, L.; Marzano, C.; Santini, C. Syntheses and biological studies of nitroimidazole conjugated heteroscorpionate ligands and related Cu(I) and Cu(II) complexes. J. Inorg. Biochem. 2018, 187, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Sukul, A.; Poddar, S.K.; Haque, S.; Saha, S.K.; Das, S.C.; Al Mahmud, Z.; Abdur Rahman, S.M. Synthesis, Characterization and Comparison of Local Analgesic, Anti-Inflammatory, Anti-Ulcerogenic Activity of Copper and Zinc Complexes of Indomethacin. Antiinflamm. Antiallergy Agents Med. Chem. 2017, 15, 221–233. [Google Scholar] [CrossRef]
- Tamasi, G.; Serinelli, F.; Consumi, M.; Magnani, A.; Casolaro, M.; Cini, R. Release studies from smart hydrogels as carriers for piroxicam and copper(II)-oxicam complexes as anti-inflammatory and anti-cancer drugs. X-ray structures of new copper(II)-piroxicam and -isoxicam complex molecules. J. Inorg. Biochem. 2008, 102, 1862–1873. [Google Scholar] [CrossRef]
- Gumilar, F.; Agotegaray, M.; Bras, C.; Gandini, N.A.; Minetti, A.; Quinzani, O. Anti-nociceptive activity and toxicity evaluation of Cu(II)-fenoprofenate complexes in mice. Eur. J. Pharmacol. 2012, 675, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Sayen, S.; Carlier, A.; Tarpin, M.; Guillon, E.A. A novel copper(II) mononuclear complex with the non-steroidal anti-inflammatory drug diclofenac: Structural characterization and biological activity. J. Inorg. Biochem. 2013, 120, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Kovala-Demertzi, D.; Hadjipavlou-Litina, D.; Staninska, M.; Primikiri, A.; Kotoglou, C.; Demertzis, M.A. Anti-oxidant, in vitro, in vivo anti-inflammatory activity and antiproliferative activity of mefenamic acid and its metal complexes with manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II). J. Enzyme Inhib. Med. Chem. 2009, 24, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Psomas, G.; Kessissoglou, D.P. Quinolones and non-steroidal anti-inflammatory drugs interacting with copper(ii), nickel(ii), cobalt(ii) and zinc(ii): Structural features, biological evaluation and perspectives. Dalton Trans. 2013, 42, 6252–6276. [Google Scholar] [CrossRef] [PubMed]
- Fujimori, T.; Yamada, S.; Yasui, H.; Sakurai, H.; In, Y.; Ishida, T. Orally active antioxidative copper(II) aspirinate: Synthesis, structure characterization, superoxide scavenging activity, and in vitro and in vivo antioxidative evaluations. J. Biol. Inorg. Chem. 2005, 10, 831–841. [Google Scholar] [CrossRef]
- Shi, X.; Fang, H.; Guo, Y.; Yuan, H.; Guo, Z.; Wang, X. Anticancer copper complex with nucleus, mitochondrion and cyclooxygenase-2 as multiple targets. J. Inorg. Biochem. 2019, 190, 38–44. [Google Scholar] [CrossRef]
- Tardito, S.; Barilli, A.; Bassanetti, I.; Tegoni, M.; Bussolati, O.; Franchi-Gazzola, R.; Mucchino, C.; Marchiò, L. Copper-Dependent Cytotoxicity of 8-Hydroxyquinoline Derivatives Correlates with Their Hydrophobicity and Does Not Require Caspase Activation. J. Med. Chem. 2012, 55, 10448–10459. [Google Scholar] [CrossRef]
- Ruiz, M.; Perelló, L.; Ortiz, R.; Castiñeiras, A.; Maichle-Mössmer, C.; Cantón, E. Synthesis, characterization, and crystal structure of [Cu(cinoxacinate)2].2H2O complex: A square-planar CuO4 chromophore. Antibacterial studies. J. Inorg. Biochem. 1995, 59, 801–810. [Google Scholar] [CrossRef]
- Wallis, S.C.; Gahan, L.R.; Charles, B.G.; Hambley, T.W.; Duckworth, P.A. Copper(II) Complexes of the Fluoroquinolone Antimicrobial Ciprofloxacin. Synthesis, X-Ray Structural Characterization, and Potentiometric Study. J. Inorg. Biochem. 1996, 62, 1–16. [Google Scholar] [CrossRef]
- Jiménez-Garrido, N.; Perelló, L.; Ortiz, R.; Alzuet, G.; González-Alvarez, M.; Cantón, E.; Liu-González, M.; García-Granda, S.; Pérez-Priede, M. Antibacterial studies, DNA oxidative cleavage, and crystal structures of Cu(II) and Co(II) complexes with two quinolone family members, ciprofloxacin and enoxacin. J. Inorg. Biochem. 2005, 99, 677–689. [Google Scholar] [CrossRef]
- Psomas, G.; Tarushi, A.; Efthimiadou, E.K.; Sanakis, Y.; Raptopoulou, C.P.; Katsaros, N. Synthesis, structure and biological activity of copper(II) complexes with oxolinic acid. J. Inorg. Biochem. 2006, 100, 1764–1773. [Google Scholar] [CrossRef]
- Bottari, B.; Maccari, R.; Monforte, F.; Ottana, R.; Rotondo, E.; Vigorita, M.G. Isoniazid Related Copper(II) and Nickel(II) Complexes with Antimycobacterial in Vitro Activity. Bioorg. Med. Chem. Lett. 2000, 10, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Ngwane, A.H.; Petersen, R.D.; Baker, B.; Wiid, I.; Wong, H.N.; Haynes, R.K. The evaluation of the anti-cancer drug elesclomol that forms a redox-active copper chelate as a potential anti-tubercular drug. IUBMB Life 2019, 71, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Mali, S.N.; Thorat, B.R.; Gupta, D.R.; Pandey, A. Mini-Review of the Importance of Hydrazides and Their Derivatives—Synthesis and Biological Activity. Eng. Proc. 2021, 11, 21. [Google Scholar] [CrossRef]
- McOsker, C.C.; Fitzpatrick, P.M. Nitrofurantoin: Mechanism of action and implications for resistance development in common uropathogens. J. Antimicr. Chemother. 1994, 33, 23–30. [Google Scholar] [CrossRef]
- Huttner, A.; Verhaegh, E.M.; Harbarth, S.; Muller, A.E.; Theuretzbacher, U.; Mouton, J.W. Nitrofurantoin revisited: A systematic review and meta-analysis of controlled trials. J. Antimicrob. Chemother. 2015, 70, 2456–2464. [Google Scholar] [CrossRef] [PubMed]
- Kashanian, J.; Hakimian, P.; Blute, M., Jr.; Wong, J.; Khanna, H.; Wise, G.; Shabsigh, R. Nitrofurantoin: The return of an old friend in the wake of growing resistance. BJU Int. 2008, 102, 1634–1637. [Google Scholar] [CrossRef]
- Loginova, N.V.; Koval’chuk-Rabchinckaya, T.V.; Ksendzova, G.A.; Gvozdev, M.Y.; Polozov, G.I. Redox-active metal complexes with hydrazone and thiosemicarbazone derivatives of 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde as novel antimicrobials for medicinal uses. In Hydrazones: Uses and Reactions; Østergaard, I.P., Ed.; Nova Science Publishers, Inc.: New York, NJ, USA, 2020; pp. 57–113. [Google Scholar]
Ligand | Biological Activity | Reference |
---|---|---|
thiabendazole | antimicrobial | [12] |
clofibrate, nicotinamide | antimicrobial | [13] |
trimethoprim | antibacterial | [14] |
doxorubicin | antiproliferative | [15] |
kanamycin A, amikacin | antibacterial, nuclease, antiproliferative | [9] |
doxycycline + 1,10-phenantroline tetracycline + 1,10-phenantroline | antiproliferative | [10] |
ertapenem, meropenem | antibacterial | [11] |
acyclovir | antiviral | [16] |
metronidazole derivatives | antiproliferative | [17] |
indomethacin | anti-inflammatory | [18] |
piroxicam, isoxicam | anti-inflammatory, antiproliferative | [19] |
fenoprofen | analgesic | [20] |
diclofenac, mefenamic acid | antiproliferative | [21,22] |
salicylic acid, diflunisal | anti-inflammatory | [23,24] |
aspirin + N-(1,10-phenanthrolin-5-yl)-nonanamide | anti-inflammatory, antiproliferative | [25] |
clioquinol | antiproliferative, antibacterial | [26] |
cinoxacin | antibacterial | [27] |
ciprofloxacin, enoxacin | antibacterial, nuclease | [28,29] |
oxolinic acid + 1,10-phenantroline | antibacterial | [30] |
isoniazid | antimycobacterial | [31] |
elesclomol | antimycobacterial | [32] |
Compound | MIC, µmol/mL | |||
---|---|---|---|---|
E. coli | S. saprophyticus | B. subtilis | P. putida | |
1 | 0.125 | 0.125 | 0.125 | 0.125 |
2 | 0.166 | 0.166 | 0.082 | >0.166 |
3 | 0.047 | 0.023 | 0.023 | 0.093 |
Ftivazide | 0.369 | 0.184 | 0.184 | >0.369 |
Nitrofurantoin | 0.052 | 0.052 | 0.052 | 0.210 |
Streptomycin | 0.005 | 0.011 | 0.011 | 0.172 |
Tetracycline | 0.007 | 0.014 | 0.014 | 0.112 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turomsha, I.S.; Gvozdev, M.Y.; Loginova, N.V.; Ksendzova, G.A.; Osipovich, N.P. Synthesis, Characterization and Biological Activity of Hydrazones and Their Copper(II) Complexes. Chem. Proc. 2022, 12, 73. https://doi.org/10.3390/ecsoc-26-13576
Turomsha IS, Gvozdev MY, Loginova NV, Ksendzova GA, Osipovich NP. Synthesis, Characterization and Biological Activity of Hydrazones and Their Copper(II) Complexes. Chemistry Proceedings. 2022; 12(1):73. https://doi.org/10.3390/ecsoc-26-13576
Chicago/Turabian StyleTuromsha, Iveta S., Maxim Y. Gvozdev, Natalia V. Loginova, Galina A. Ksendzova, and Nikolai P. Osipovich. 2022. "Synthesis, Characterization and Biological Activity of Hydrazones and Their Copper(II) Complexes" Chemistry Proceedings 12, no. 1: 73. https://doi.org/10.3390/ecsoc-26-13576
APA StyleTuromsha, I. S., Gvozdev, M. Y., Loginova, N. V., Ksendzova, G. A., & Osipovich, N. P. (2022). Synthesis, Characterization and Biological Activity of Hydrazones and Their Copper(II) Complexes. Chemistry Proceedings, 12(1), 73. https://doi.org/10.3390/ecsoc-26-13576