The Potential of Thiazole Derivatives as Antimicrobial Agents †
Abstract
:1. Introduction
2. Synthesis of Thiazole Derivatives
2.1. General Information
2.2. Synthesis of 2,3-Disubstituted Thiazole
2.3. Synthesis of 2,3,4-Trisubstituted Thiazole
2.4. Synthesis of Thiazoyl Derivatives
2.5. Synthesis of 2,5-Disubstituted Thiazole Derivatives
2.6. Synthesis of 2,4,5-Trisubstituted Thiazoles
2.7. Synthesis of 2-Thio-3-methyl-5-thiazolidinone
2.8. Synthesis of 2-Thioxo-4-thiazolidinone
3. Biological Potential of Thiazole
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, K.-C.; Chen, Z.; Jiang, Y.; Akare, S.; Kolber-Simonds, D.; Condon, K.; Agoulnik, S.; Tendyke, K.; Shen, Y.; Wu, K.-M.; et al. Apratoxin A Shows Novel Pancreas-Targeting Activity through the Binding of Sec 61Apratoxin A, a Novel Pancreas-Targeting Agent. Mol. Cancer Ther. 2016, 15, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Desai, N.C.; Rajpara, K.M.; Joshi, V.V. Synthesis and antimicrobial screening of 5-(benzylidene)-3-phenylthiazolidin-4-one derivatives incorporating thiazole ring. Med. Chem. Res. 2013, 22, 5044–5055. [Google Scholar] [CrossRef]
- Mahmoodi, N.O.; Pirbasti, F.G. Overview on the recently developed thiazolyl heterocycles as useful therapeutic agents. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 811–843. [Google Scholar] [CrossRef]
- Cascioferro, S.M.; Parrino, B.; Carbone, D.; Schillaci, D.; Giovannetti, E.; Cirrincione, G.; Diana, P. Thiazoles, Their Benzofused Systems, and Thiazolidinone Derivatives: Versatile and Promising Tools to Combat Antibiotic Resistance. J. Med. Chem. 2020, 63, 7923–7956. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Chauhan, V.; Silva, J.R.A.; Lameira, J.; D’Andrea, F.B.; Li, S.-G.; Ginell, S.L.; Freundlich, J.S.; Alves, C.N.; Bailey, S.; et al. Mycobacterium abscessus l, d-Transpeptidases Are Susceptible to Inactivation by Carbapenems and Cephalosporins but Not Penicillins. Antimicrob. Agents Chemother. 2017, 61, e00866-17. [Google Scholar] [CrossRef] [PubMed]
- Desai, N.; Joshi, V.; Rajpara, K.; Vaghani, H.; Satodiya, H. Facile synthesis of novel fluorine containing pyrazole based thiazole derivatives and evaluation of antimicrobial activity. J. Fluor. Chem. 2012, 142, 67–78. [Google Scholar] [CrossRef]
- Ripain, I.H.A.; Ngah, N. A brief review on the thiazole derivatives: Synthesis methods and biological activities. Malays. J. Anal. Sci. 2021, 25, 257–267. [Google Scholar]
- Gaballah, S.T.; Khalil, A.M.; Rabie, S.T. Thiazole derivatives-functionalized polyvinyl chloride nanocomposites with photostability and antimicrobial properties. J. Vinyl Addit. Technol. 2019, 25, E137–E146. [Google Scholar] [CrossRef]
- Sharshira, E.M.; Hamada, N.M.M. Synthesis, Characterization and Antimicrobial Activities of Some Thiazole Derivatives. Am. J. Org. Chem. 2012, 2, 69–73. [Google Scholar] [CrossRef]
- Liu, C.-B.; Shan, B.; Bai, H.-M.; Tang, J.; Yan, L.-Z.; Ma, Y.-B. Hydrophilic/hydrophobic characters of antimicrobial peptides derived from animals and their effects on multidrug resistant clinical isolates. Zool. Res. 2015, 36, 41–47. [Google Scholar] [CrossRef]
- Castillo Expósito, J.A. Studies on Antimicrobial Activity of Arginine-Based Surfactants and Chemoenyzmatic Synthesis of Novel Amphiphiles Based on L-Arginine and d-Fagomine; Universitat Autònoma de Barcelona: Bellaterra, Spain, 2007. [Google Scholar]
- Durst, T. Comprehensive Organic Chemistry; Barton, D.H.R., Ollis, W.D., Eds.; Pergamon: Oxford, UK, 1979; Volume 3, p. 197. [Google Scholar]
- Khan, K.M.; Qurban, S.; Salar, U.; Taha, M.; Hussain, S.; Perveen, S.; Hameed, A.; Ismail, N.H.; Riaz, M.; Wadood, A. Synthesis, in vitro α-glucosidase inhibitory activity and molecular docking studies of new thiazole derivatives. Bioorg. Chem. 2016, 68, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Kant, V. A Review on Biological Activity of Imidazole and Thiazole Moieties and their Derivatives. Sci. Int. 2013, 1, 253–260. [Google Scholar] [CrossRef]
- Mishra, C.B.; Kumari, S.; Tiwari, M. Thiazole: A promising heterocycle for the development of potent CNS active agents. Eur. J. Med. Chem. 2015, 92, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Sattar, N.E.A.; El-Naggar, A.M.; Abdel-Mottaleb, M.S.A. Novel Thiazole Derivatives of Medicinal Potential: Synthesis and Modeling. J. Chem. 2017, 2017, 4102796. [Google Scholar] [CrossRef]
- Kumar, J.S.; Alam, M.A.; Gurrapu, S.; Nelson, G.; Williams, M.; Corsello, M.A.; Johnson, J.L.; Jonnalagadda, S.C.; Mereddy, V.R. Synthesis and Biological Evaluation of Novel Benzoxaboroles as Potential Antimicrobial and Anticancer Agents. J. Heterocycl. Chem. 2013, 50, 814–820. [Google Scholar] [CrossRef]
- de Santana, T.I.; Barbosa, M.D.O.; Gomes, P.A.T.D.M.; da Cruz, A.C.N.; da Silva, T.G.; Leite, A.C.L. Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur. J. Med. Chem. 2018, 144, 874–886. [Google Scholar] [CrossRef]
- Wu, M.; Jiang, Y.; An, Z.; Qi, Z.; Yan, R. Iron-Catalyzed Synthesis of Substituted Thiazoles from Enamines and Elemental Sulfur through C−S Bond Formation. Adv. Synth. Catal. 2018, 360, 4236–4240. [Google Scholar] [CrossRef]
- Gomha, S.M.; Salaheldin, T.A.; Hassaneen, H.M.E.; Abdel-Aziz, H.M.; Khedr, M.A. Synthesis, Characterization and Molecular Docking of Novel Bioactive Thiazolyl-Thiazole Derivatives as Promising Cytotoxic Antitumor Drug. Molecules 2015, 21, 3. [Google Scholar] [CrossRef]
- Jiang, J.; Huang, H.; Deng, G.J. Four-component thiazole formation from simple chemicals under metal-free conditions. Green Chem. 2019, 21, 986–990. [Google Scholar] [CrossRef]
- Cook, A.H.; Cox, S.F. Studies in the azole series. Part XXI. Experiments with N-alkylamino-nitriles. J. Chem. Soc. (Resumed) 1949, 495, 2337–2341. [Google Scholar] [CrossRef]
- Rostamnia, S.; Zeynizadeh, B.; Doustkhah, E.; Baghban, A.; Aghbash, K.O. The use of κ-carrageenan/Fe3O4 nanocomposite as a nanomagnetic catalyst for clean synthesis of rhodanines. Catal. Commun. 2015, 68, 77–83. [Google Scholar] [CrossRef]
- Darwish, E.S.; Fattah, A.M.A.; Attaby, F.A.; Al-Shayea, O.N. Synthesis and Antimicrobial Evaluation of Some Novel Thiazole, Pyridone, Pyrazole, Chromene, Hydrazone Derivatives Bearing a Biologically Active Sulfonamide Moiety. Int. J. Mol. Sci. 2014, 15, 1237–1254. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, M.E. Recent Developments and Biological Activities of 2-Aminothiazole Derivatives. Acta Chim. Slov. 2018, 65, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.K.; Shukla, P.K.; Soni, N.; Verma, A. Synthesis, characterization and biological evaluation of thiazole in-corporated triazole compounds. Pharm. Lett. 2015, 7, 67–74. [Google Scholar]
- Catalano, A.; Carocci, A.; Defrenza, I.; Muraglia, M.; Carrieri, A.; Van Bambeke, F.; Rosato, A.; Corbo, F.; Franchini, C. 2-Aminobenzothiazole derivatives: Search for new antifungal agents. Eur. J. Med. Chem. 2013, 64, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem. 2015, 97, 699–718. [Google Scholar] [CrossRef]
- Arora, P.; Narang, R.; Bhatia, S.; Nayak, S.; Singh, S.; Narasimhan, B. Synthesis, molecular docking and QSAR studies of 2, 4-disubstituted thiazoles as antimicrobial agents. J. Appl. Pharm. Sci. 2015, 5, 28–42. [Google Scholar] [CrossRef]
- Sidhu, A.; Kukreja, S. Synthesis of novel fluorinated benzothiazol-2-yl-1,2,4-triazoles: Molecular docking, antifungal evaluation and in silico evaluation for SAR. Arab. J. Chem. 2019, 12, 2118–2127. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thakur, S.; Sharma, R.; Yadav, R.; Sardana, S. The Potential of Thiazole Derivatives as Antimicrobial Agents. Chem. Proc. 2022, 12, 36. https://doi.org/10.3390/ecsoc-26-13673
Thakur S, Sharma R, Yadav R, Sardana S. The Potential of Thiazole Derivatives as Antimicrobial Agents. Chemistry Proceedings. 2022; 12(1):36. https://doi.org/10.3390/ecsoc-26-13673
Chicago/Turabian StyleThakur, Shabnam, Rupali Sharma, Rakesh Yadav, and Satish Sardana. 2022. "The Potential of Thiazole Derivatives as Antimicrobial Agents" Chemistry Proceedings 12, no. 1: 36. https://doi.org/10.3390/ecsoc-26-13673
APA StyleThakur, S., Sharma, R., Yadav, R., & Sardana, S. (2022). The Potential of Thiazole Derivatives as Antimicrobial Agents. Chemistry Proceedings, 12(1), 36. https://doi.org/10.3390/ecsoc-26-13673