Fertilizer Management Strategy to Reduce Global Warming Potential and Improve Soil Fertility in a Nitisol in Southwestern Ethiopia †
Abstract
:1. Introduction
2. Material and Method
3. Result and Discussion
3.1. Fertilizer Management Effect on Global Warming Potential
3.2. Effect of Combined Fertilizer on Soil Fertility
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brevik, E. The Potential Impact of Climate Change on Soil Properties and Processes and Corresponding Influence on Food Security. Agriculture 2013, 3, 398–417. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Qi, Z.; Madramootoo, C.A.; Crézé, C. Mitigating Greenhouse Gas Emissions in Subsurface-Drained Field Using RZWQM2. Sci. Total Environ. 2019, 646, 377–389. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2014 Synthesis Report Summary for Policymakers; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Kim, D.G.; Thomas, A.D.; Pelster, D.; Rosenstock, T.S.; Sanz-Cobena, A. Greenhouse Gas Emissions from Natural Ecosystems and Agricultural Lands in Sub-Saharan Africa: Synthesis of Available Data and Suggestions for Further Research. Biogeosciences 2016, 13, 4789–4809. [Google Scholar] [CrossRef] [Green Version]
- Raji, S.G.; Dörsch, P. Effect of legume intercropping on N2O emissions and CH4 uptake during maize production in the Great Rift Valley, Ethiopia. Biogeosciences 2020, 17, 345–359. [Google Scholar] [CrossRef] [Green Version]
- Worku, M.A. Climate Change Mitigation in Agriculture and Forestry Sectors in Ethiopia: A Review. Agric. For. J. 2020, 4, 11–18. [Google Scholar]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50 Year Trends in Nitrogen Use Efficiency of World Cropping Systems: The Relationship between Yield and Nitrogen Input to Cropland. Environ. Res. Lett. 2014, 9, 105011. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, T.; Jiang, S.; Cao, C.; Li, C.; Chen, B.; Liu, J. Combined Effects of Straw Returning and Chemical N Fertilization on Greenhouse Gas Emissions and Yield from Paddy Fields in Northwest Hubei Province, China. J. Soil Sci. Plant Nutr. 2020, 20, 392–406. [Google Scholar] [CrossRef]
- Zerssa, G.W.; Kim, D.-G.; Koal, P.; Eichler-Löbermann, B. Combination of Compost and Mineral Fertilizers as an Option for Enhancing Maize (Zea mays L.) Yields and Mitigating Greenhouse Gas Emissions from a Nitisol in Ethiopia. Agronomy 2021, 11, 2097. [Google Scholar] [CrossRef]
- Comeau, L.-P.; Lai, D.Y.F.; Cui, J.J.; Hartill, J. Soil Heterotrophic Respiration Assessment Using Minimally Disturbed Soil Microcosm Cores. MethodsX 2018, 5, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Bharali, A.; Baruah, K.K.; Baruah, S.G.; Bhattacharyya, P. Impacts of Integrated Nutrient Management on Methane Emission, Global Warming Potential and Carbon Storage Capacity in Rice Grown in a Northeast India Soil. Environ. Sci. Pollut. Res. 2018, 25, 5889–5901. [Google Scholar] [CrossRef] [PubMed]
- FDRE Forest Development, Conservation, and Utilization Proclamation. Proclamation No. 1065/2018; Paper Reference 2; Federal Democratic Republic of Ethiopia: Addis Ababa, Ethiopia, 2018. [Google Scholar]
- Ogundijo, D.; Adetunji, M.; Azeez, J.; Arowolo, T.; Olla, N.; Adekunle, A. Influence of Organic and Inorganic Fertilizers on Soil Chemical Properties and Nutrient Changes in an Alfisol of South Western Nigeria. Int. J. Plant Soil Sci. 2015, 7, 329–337. [Google Scholar] [CrossRef]
- Tiwari, A.; Singh, N.B.; Kumar, A. Effect of Integrated Nutrient Management (INM) on Soil Properties, Yield and Economics of Rice (Oryza sativa L.). Res. J. Environ. Life Sci. 2017, 10, 640–644. [Google Scholar] [CrossRef]
- Abraham, R.R.; Joseph, K.; Joseph, P. Effect of Integrated Nutrient Management on Soil Quality and Growth of Hevea Brasiliensis during the Immature Phase. Rubber Sci. 2015, 28, 159–167. [Google Scholar]
- Zenawi, G.; Mizan, A. Effect of Nitrogen Fertilization on the Growth and Seed Yield of Sesame (Sesamum indicum L.). Int. J. Agron. 2019, 2019, 5027254. [Google Scholar] [CrossRef] [Green Version]
Soil Parameters | Treatment | ||||||
---|---|---|---|---|---|---|---|
Cont | 100 min | 80 min | 60 min | 50 min | 30 min | 100 comp | |
Fe | 46.5 ± 2.8 ab | 52 ± 2 ab | 65 ± 3.1 ab | 58.9 ± 3.5 ab | 48.2 ± 2.8 ab | 13.5 ± 2.1 b | 3.7 ± 0.6 a |
Ca | 266.1 ± 21 b | 162.6 ± 30 a | 350.3 ± 11.6 d | 356.2 ± 21.2 d | 281.7 ± 34.1 b | 437.1 ± 38.9 c | 121.7± 7.3 a |
Mg | 30.4 ± 2.3 abd | 16.3 ± 2.9 a | 47.7 ± 6.5 cd | 42.9 ± 9.7 d | 57.3 ± 10.5 c | 40.2 ± 3.3 bd | 20.5 ± 1.4 a |
K | 27.9 ± 3.6 a | 61.7 ± 12.2 e | 90.5 ± 6.3 bc | 122.8 ± 11.2 d | 108.6 ± 1.6 d | 101.5 ± 7.9 c | 75 ± 5.2 be |
N | 227.5 ± 7.1 a | 332.5 ± 26.3 bd | 315 ± 23.8 ad | 371 ± 21.6 b | 335.3 ± 12.8 bd | 350 ± 18.3 bd | 285 ± 17.3 a |
P | 0.3 ± 0.01 a | 0.2 ± 0.05 a | −0.14 ± 0.1 a | 0.4 ± 0.1 a | 0.07 ± 0.01 a | −0.02 ±0.01 a | 0.6 ± 0.1 a |
S | 45 ± 12 a | −2.2 ± 1.02 a | 20 ± 8.02 a | 10 ± 2.1 a | 235 ± 55.1 b | 30 ± 4.1 a | 15 ± 2.8 a |
C | 2375 ± 95.7 a | 2575 ± 359.4 a | 2975 ± 596.5 ac | 3250 ± 70.2 bc | 3600 ± 81.7 b | 3475 ± 221.7 bc | 3875 ± 170.8 b |
Zn | 8.4 ± 1.2 ab | 7.9 ± 2.1 ab | 18.2 ± 1.5 c | 10.1 ± 0.9 abc | 7.5 ± 1.3 ab | 12 ± 0.4 bc | 2.8 ± 0.4 a |
Mn | 158 ± 16.8 a | 182.5 ± 17.3 a | 407.6 ± 64.3 b | 238.3 ± 2.3 c | 181.4 ± 12.7 ac | 38.5 ± 1.8 b | 179 ± 2 a |
pH | 0.04 ± 0.01 a | 0.14 ± 0.01 bc | 0.16 ± 0.04 bc | 0.17 ± 0.03 bc | 0.15 ± 0.06 bc | 0.20 ± 0.01 b | 0.09 ± 0.01 ac |
Ec | 0.2 ± 0.004 a | 0.2 ± 0.01 a | 0.17 ± 0.02 a | 0.20 ± 0.01 a | 0.17 ± 0.01 a | 0.16 ± 0.01 a | 0.18 ± 0.01 a |
CEC | 0.06 ± 0.006 a | 0.1 ± 0.001 d | 0.13 ± 0.006 c | 0.10 ± 0.01 b | 0.07 ± 0.004 ab | 0.09 ± 0.01 bd | 0.07 ± 0.003 ad |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zerssa, G.W.; Koal, P.; Eichler-Löbermann, B. Fertilizer Management Strategy to Reduce Global Warming Potential and Improve Soil Fertility in a Nitisol in Southwestern Ethiopia. Chem. Proc. 2022, 10, 51. https://doi.org/10.3390/IOCAG2022-12180
Zerssa GW, Koal P, Eichler-Löbermann B. Fertilizer Management Strategy to Reduce Global Warming Potential and Improve Soil Fertility in a Nitisol in Southwestern Ethiopia. Chemistry Proceedings. 2022; 10(1):51. https://doi.org/10.3390/IOCAG2022-12180
Chicago/Turabian StyleZerssa, Gebeyanesh Worku, Philipp Koal, and Bettina Eichler-Löbermann. 2022. "Fertilizer Management Strategy to Reduce Global Warming Potential and Improve Soil Fertility in a Nitisol in Southwestern Ethiopia" Chemistry Proceedings 10, no. 1: 51. https://doi.org/10.3390/IOCAG2022-12180
APA StyleZerssa, G. W., Koal, P., & Eichler-Löbermann, B. (2022). Fertilizer Management Strategy to Reduce Global Warming Potential and Improve Soil Fertility in a Nitisol in Southwestern Ethiopia. Chemistry Proceedings, 10(1), 51. https://doi.org/10.3390/IOCAG2022-12180