Glycemia Risk Index: A New Metric to Rule Them All?
Abstract
:1. Introduction
- -
- Hypoglycemia with very low glucose level, below 54 mg/dL (TBR < 54) (level 2 hypoglycemia).
- -
- Hypoglycemia with low glucose level, between 54 and 70 mg/dL (TBR 54–70) (level 1 hypoglycemia).
- -
- Time in range of 70–180 mg/dL (TIR).
- -
- Hyperglycemia with high glucose level, between 180 and 250 mg/dL (TAR 180–250) (level 1 hyperglycemia).
- -
- Hyperglycemia with very high glucose level above 250 mg/dL (TAR > 250) (level 2 hyperglycemia).
- -
- Mean glucose and glucose management indicator (GMI).
- -
- Coefficient of variation (CV) (standard deviation/mean glucose).
2. Methodology
3. GRI Scenarios
3.1. Evidence in T1D with Continuous Subcutaneous Insulin Infusion (CSII)
3.2. Evidence in T1D Pediatric Population
3.3. Evidence of GRI in Other Types of Diabetes Mellitus
3.4. GRI and Its Relationship with Other Parameters
3.5. GRI and Chronic Complications
3.6. GRI and Quality of Life
4. Discussion
5. Future Directions
6. Conclusions
Funding
Conflicts of Interest
References
- Magliano, D.J.; Boyko, E.J.; IDF Diabetes Atlas 10th Edition Scientific Committee. IDF DIABETES ATLAS [Internet], 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. Available online: http://www.ncbi.nlm.nih.gov/books/NBK581934/ (accessed on 27 December 2023).
- Libman, I.; Haynes, A.; Lyons, S.; Pradeep, P.; Rwagasor, E.; Tung, J.Y.L.; Jefferies, C.A.; Oram, R.A.; Dabelea, D.; Craig, M.E. ISPAD Clinical Practice Consensus Guidelines 2022: Definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr. Diabetes 2022, 23, 1160–1174. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47 (Suppl. S1), S20–S42. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 7. Diabetes Technology: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47 (Suppl. S1), S126–S144. [Google Scholar] [CrossRef]
- Holt, R.I.G.; DeVries, J.H.; Hess-Fischl, A.; Hirsch, I.B.; Kirkman, M.S.; Klupa, T.; Ludwig, B.; Nørgaard, K.; Pettus, J.; Renard, E.; et al. The Management of Type 1 Diabetes in Adults. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2021, 44, 2589–2625. [Google Scholar] [CrossRef] [PubMed]
- Karter, A.J.; Parker, M.M.; Moffet, H.H.; Gilliam, L.K.; Dlott, R. Association of Real-time Continuous Glucose Monitoring With Glycemic Control and Acute Metabolic Events Among Patients With Insulin-Treated Diabetes. JAMA 2021, 325, 2273–2284. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 6. Glycemic Goals and Hypoglycemia: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47 (Suppl. S1), S111–S125. [Google Scholar] [CrossRef]
- Bergenstal, R.M.; Ahmann, A.J.; Bailey, T.; Beck, R.W.; Bissen, J.; Buckingham, B.; Deeb, L.; Dolin, R.H.; Garg, S.K.; Goland, R.; et al. Recommendations for standardizing glucose reporting and analysis to optimize clinical decision making in diabetes: The ambulatory glucose profile. J. Diabetes Sci. Technol. 2013, 7, 562–578. [Google Scholar] [CrossRef]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef]
- Rodbard, D. Metrics to Evaluate Quality of Glycemic Control: Comparison of Time in Target, Hypoglycemic, and Hyperglycemic Ranges with “Risk Indices”. Diabetes Technol. Ther. 2018, 20, 325–334. [Google Scholar] [CrossRef]
- Klonoff, D.C.; Wang, J.; Rodbard, D.; Kohn, M.A.; Li, C.; Liepmann, D.; Kerr, D.; Ahn, D.; Peters, A.L.; Umpierrez, G.E.; et al. A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings. J. Diabetes Sci. Technol. 2022, 17, 1226–1242. [Google Scholar] [CrossRef]
- Benhamou, P.-Y.; Adenis, A.; Tourki, Y.; Pou, S.; Madrolle, S.; Franc, S.; Kariyawasam, D.; Beltrand, J.; Klonoff, D.C.; Charpentier, G. Efficacy of a Hybrid Closed-Loop Solution in Patients with Excessive Time in Hypoglycaemia: A Post Hoc Analysis of Trials With DBLG1 System. J. Diabetes Sci. Technol. 2022, 18, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Vogrin, S.; Jones, T.W.; O’Neal, D.N. Hybrid Closed-Loop Versus Manual Insulin Delivery in Adults with Type 1 Diabetes: A Post Hoc Analysis Using the Glycemia Risk Index. J. Diabetes Sci. Technol. 2024, 18, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Gooley, J.; Obeyesekere, V.; Lu, J.; Paldus, B.; Hendrieckx, C.; MacIsaac, R.J.; McAuley, S.A.; Speight, J.; Vogrin, S.; et al. Hybrid Closed Loop in Adults with Type 1 Diabetes and Severely Impaired Hypoglycemia Awareness. J. Diabetes Sci. Technol. 2024, 19322968241245627. [Google Scholar] [CrossRef]
- Resmini, E.; Zarra, E.; Dotti, S.; Rotondi, G.; Cornaghi, A.V.; Madaschi, S.; Cimino, E.; Massari, G.; Pezzaioli, L.C.; Buoso, C.; et al. Impact on Glycemia Risk Index and other metrics in type 1 adult patients switching to Advanced Hybrid Closed-Loop systems: A one-year real-life experience. Eur. J. Med. Res. 2024, 29, 365. [Google Scholar] [CrossRef]
- Passanisi, S.; Salzano, G.; Bombaci, B.; Minuto, N.; Bassi, M.; Bonfanti, R.; Scialabba, F.; Mozzillo, E.; Di Candia, F.; Monti, S.; et al. Sustained Effectiveness of an Advanced Hybrid Closed Loop System in a Cohort of Children and Adolescents with Type 1 Diabetes: A 1-Year Real-World Study. Diabetes Care 2024, 47, 1084–1091. [Google Scholar] [CrossRef]
- Díaz-Soto, G.; Pérez-López, P.; Férnandez-Velasco, P.; Nieto de la Marca, M.O.; Delgado, E.; Del Amo, S.; de Luis, D.; Bahillo-Curieses, P. Glycemia Risk Index Assessment in a Pediatric and Adult Patient Cohort with Type 1 Diabetes Mellitus. J. Diabetes Sci. Technol. 2024, 18, 1063–1069. [Google Scholar] [CrossRef]
- Eviz, E.; Mutlu, G.Y.; Karakus, K.E.; Can, E.; Gokce, T.; Muradoglu, S.; Hatun, S. The Advanced Hybrid Closed Loop Improves Glycemia Risk Index, Continuous Glucose Monitoring Index, and Time in Range in Children with Type 1 Diabetes: Real-World Data from a Single Center Study. Diabetes Technol. Ther. 2023, 25, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Santova, A.; Plachy, L.; Neuman, V.; Pavlikova, M.; Petruzelkova, L.; Konecna, P.; Venhacova, P.; Skvor, J.; Pomahacova, R.; Neumann, D.; et al. Are all HCL systems the same? long term outcomes of three HCL systems in children with type 1 diabetes: Real-life registry-based study. Front. Endocrinol. 2023, 14, 1283181. [Google Scholar] [CrossRef]
- Castorani, V.; Favalli, V.; Rigamonti, A.; Frontino, G.; Di Tonno, R.; Morotti, E.; Sandullo, F.; Scialabba, F.; Arrigoni, F.; Dionisi, B.; et al. A comparative study using insulin pump therapy and continuous glucose monitoring in newly diagnosed very young children with type 1 diabetes: It is possible to bend the curve of HbA1c. Acta Diabetol. 2023, 60, 1719–1726. [Google Scholar] [CrossRef]
- Citro, F.; Bianchi, C.; Belcari, T.; Galleano, F.; Venturi, C.; Battini, L.; Marchetti, P.; Bertolotto, A.; Aragona, M. Predicting the Risk of Adverse Neonatal Outcomes in Women with Insulin-Treated Diabetes: Is It Time for a Pregnancy-Specific Glycemic Risk Index (GRI)? J. Diabetes Sci. Technol. 2024, 19322968241289957. [Google Scholar] [CrossRef]
- Herranz-Antolín, S.; Cotón-Batres, C.; López-Virgos, M.C.; Esteban-Monge, V.; Álvarez-de Frutos, V.; Torralba, M. Factors associated with Glycemia Risk Index in a cohort of patients with type 1 Diabetes Mellitus and Latent Autoimmune Diabetes in Adults (LADA). Endocrine 2024, 86, 574–583. [Google Scholar] [CrossRef]
- Rivas-Montenegro, A.; Añez-Ramos, R.; Galdón-Sanz Pastor, A.; González-Albarrán, O. Continuous Glucose Monitoring in Hospitalized Patients with Type 2 Diabetes: A Step Forward in Inpatient Glycemic Control. Endocr. Pract. 2025, 31, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Ayers, A.T.; Ho, C.N.; Hussain, S.; Klonoff, D.C. Comparison of the glycemia risk index and time in range in a case series of using automated insulin delivery to improve glycemic control in people with type 1 diabetes and end stage kidney disease on hemodialysis. Diabetes Res. Clin. Pract. 2025, 219, 111940. [Google Scholar] [CrossRef]
- Zhong, T.; He, B.; Li, X.; Lei, K.; Tang, R.; Zhao, B.; Li, X. Glycaemia risk index uncovers distinct glycaemic variability patterns associated with remission status in type 1 diabetes. Diabetologia 2024, 67, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Piona, C.; Marigliano, M.; Roncarà, C.; Mozzillo, E.; Di Candia, F.; Zanfardino, A.; Iafusco, D.; Maltoni, G.; Zucchini, S.; Piccinno, E.; et al. Glycemia Risk Index as a Novel Metric to Evaluate the Safety of Glycemic Control in Children and Adolescents with Type 1 Diabetes: An Observational, Multicenter, Real-Life Cohort Study. Diabetes Technol. Ther. 2023, 25, 507–512. [Google Scholar] [CrossRef]
- Kim, J.Y.; Yoo, J.H.; Kim, J.H. Comparison of glycemic risk index (GRI) with time in range for assessing glycemic quality. Diabetes Technol. Ther. 2023, 25, 883–892. [Google Scholar] [CrossRef]
- Pérez-López, P.; Férnandez-Velasco, P.; Bahillo-Curieses, P.; de Luis, D.; Díaz-Soto, G. Impact of glucose variability on the assessment of the glycemia risk index (GRI) and classic glycemic metrics. Endocrine 2023, 82, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Soto, G.; Bahíllo-Curieses, M.P.; Jimenez, R.; Nieto, M.d.l.O.; Gomez, E.; Torres, B.; Gomez, J.J.L.; de Luis, D. The relationship between glycosylated hemoglobin, time-in-range and glycemic variability in type 1 diabetes patients under flash glucose monitoring. Endocrinol. Diabetes Nutrición (Engl. Ed.) 2021, 68, 465–471. [Google Scholar] [CrossRef]
- Lu, J.; Ma, X.; Zhang, L.; Mo, Y.; Lu, W.; Zhu, W.; Bao, Y.; Jia, W.; Zhou, J. Glycemic variability modifies the relationship between time in range and hemoglobin A1c estimated from continuous glucose monitoring: A preliminary study. Diabetes Res. Clin. Pract. 2020, 161, 108032. [Google Scholar] [CrossRef]
- Herranz-Antolín, S.; Coton-Batres, C.; López-Virgos, M.C.; Esteban-Monge, V.; Álvarez-de Frutos, V.; Pekarek, L.; Torralba, M. Glycemic Risk Index in a Cohort of Patients with Type 1 Diabetes Mellitus Stratified by the Coefficient of Variation: A Real-Life Study. Diabetes Technol. Ther. 2024, 26, 960–967. [Google Scholar] [CrossRef]
- Picard, S.; Courbebaisse, B.; Dupont, J.; Amiot-Chapoutot, F.; Lecornet-Sokol, E.; Personeni, E.; Mougel, F.; Bouché, C.; Giroud, F.; Lablanche, S.; et al. Glycemia Risk Index (GRI) and international glucose targets before and 6 months after initiation of hybrid closed loop system in the CIRDIA, a French multisite out-of-hospital center. Diabetes Metab. 2025, 51, 101617. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, J.; Ni, J.; Wang, M.; Shen, Y.; Lu, W.; Zhu, W.; Bao, Y.; Rodbard, D.; Vigersky, R.A.; et al. Association between glycaemia risk index (GRI) and diabetic retinopathy in type 2 diabetes: A cohort study. Diabetes Obes. Metab. 2023, 25, 2457–2463. [Google Scholar] [CrossRef] [PubMed]
- Takagi, A.; Kusunoki, Y.; Ohigashi, M.; Osugi, K.; Inoue, C.; Inoue, M.; Tsunoda, T.; Kadoya, M.; Konishi, K.; Katsuno, T.; et al. Association between continuous glucose monitoring-derived glycemic control indices and urinary biomarkers of diabetic kidney disease: Hyogo Diabetes Hypoglycemia Cognition Complications study. Acta Diabetol. 2024, 61, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.H.; Kim, J.Y.; Kim, J.H. Association Between Continuous Glucose Monitoring-Derived Glycemia Risk Index and Albuminuria in Type 2 Diabetes. Diabetes Technol. Ther. 2023, 25, 726–735. [Google Scholar] [CrossRef]
- Kim, J.Y.; Yoo, J.H.; Kim, N.H.; Kim, J.H. Glycemia Risk Index is Associated with Risk of Albuminuria Among Individuals with Type 1 Diabetes. J. Diabetes Sci. Technol. 2025, 19322968241310850. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, P.; Li, L.; Li, J. Diabetic Peripheral Neuropathy and Glycemia Risk Index in Type 2 Diabetes: A Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2024, 17, 4191–4198. [Google Scholar] [CrossRef]
- Jun, J.E.; Lee, Y.B.; Kim, J.H. Association of Continuous Glucose Monitoring-Derived Glycemia Risk Index with Cardiovascular Autonomic Neuropathy in Patients with Type 1 Diabetes Mellitus: A Cross-sectional Study. J. Diabetes Sci. Technol. 2024, 19322968241288579. [Google Scholar] [CrossRef]
- Dong, S.; Wang, L.; Zhao, C.; Zhang, R.; Gao, Z.; Jiang, L.; Guo, Y.; Zhou, H.; Xu, S. Relationship between key continuous glucose monitoring-derived metrics and specific cognitive domains in patients with type 2 diabetes mellitus. BMC Neurol. 2023, 23, 200. [Google Scholar] [CrossRef]
- Marigliano, M.; Pertile, R.; Mozzillo, E.; Troncone, A.; Maffeis, C.; Morotti, E.; Di Candia, F.; Fedi, L.; Iafusco, D.; Zanfardino, A.; et al. Satisfaction with continuous glucose monitoring is positively correlated with time in range in children with type 1 diabetes. Diabetes Res. Clin. Pract. 2023, 204, 110895. [Google Scholar] [CrossRef]
- Díaz-Soto, G.; Pérez-López, P.; Férnandez-Velasco, P.; Bahillo-Curieses, P.; de la ONieto de la Marca, M.; Jimenez, R.; de Luis, D. Quality of life, diabetes-related stress and treatment satisfaction are correlated with glycemia risk index (GRI), time in range and hypoglycemia/hyperglycemia components in type 1 diabetes. Endocrine 2024, 86, 186–193. [Google Scholar] [CrossRef]
- Bahillo-Curieses, P.; Fernández Velasco, P.; Pérez-López, P.; Vidueira Martínez, A.M.; Nieto de la Marca, M.O.; Díaz-Soto, G. Utility of time in tight range (TITR) in evaluating metabolic control in pediatric and adult patients with type 1 diabetes in treatment with advanced hybrid closed-loop systems. Endocrine 2024, 86, 539–545. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz Soto, G.; Pérez López, P.; Fernández Velasco, P.; Bahillo Curieses, P. Glycemia Risk Index: A New Metric to Rule Them All? Diabetology 2025, 6, 49. https://doi.org/10.3390/diabetology6060049
Diaz Soto G, Pérez López P, Fernández Velasco P, Bahillo Curieses P. Glycemia Risk Index: A New Metric to Rule Them All? Diabetology. 2025; 6(6):49. https://doi.org/10.3390/diabetology6060049
Chicago/Turabian StyleDiaz Soto, Gonzalo, Paloma Pérez López, Pablo Fernández Velasco, and Pilar Bahillo Curieses. 2025. "Glycemia Risk Index: A New Metric to Rule Them All?" Diabetology 6, no. 6: 49. https://doi.org/10.3390/diabetology6060049
APA StyleDiaz Soto, G., Pérez López, P., Fernández Velasco, P., & Bahillo Curieses, P. (2025). Glycemia Risk Index: A New Metric to Rule Them All? Diabetology, 6(6), 49. https://doi.org/10.3390/diabetology6060049