Uses of African Plants and Associated Indigenous Knowledge for the Management of Diabetes Mellitus
Abstract
:1. Introduction
1.1. Prevalence of Diabetes Mellitus
1.2. Global Burden of Diabetes Mellitus
2. Indigenous Methods of Diagnosing Diabetes Mellitus
3. Botanical Overview, Preparation, and Administration of Plants Used in Managing Diabetes Mellitus
3.1. Families, Life Forms, and Plant Parts
Authors | Title of the Review | Number of Plants |
---|---|---|
Abouzekry et al. [44] | Phytotherapy for diabetes mellitus; A review of Middle Eastern and North African folk medicinal plants | 14 |
Balogun et al. [38] | Antidiabetic medicinal plants used by the Basotho Tribe of Eastern Free State: A review | 26 |
Chukwuma et al. [45] | Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: A review | 102 |
Idm’hand et al. [2] | Ethnopharmacological review of medicinal plants used to manage diabetes in Morocco | 255 |
Mohammed et al. [24] | African medicinal plants with antidiabetic potentials: A review | 185 |
Mohammed and Tajuddeen [43] | Antidiabetic compounds from medicinal plants traditionally used for the treatment of diabetes in Africa: A review update (2015–2020) | 24 |
Seetaloo et al. [46] | Potential of traditionally consumed medicinal herbs, spices, and food plants to inhibit key digestive enzymes geared towards diabetes mellitus management—A systematic review | 94 |
Semenya and Maroyi [47] | A review of plants used against diabetes mellitus by Bapedi and Vhavenda ethnic groups in the Limpopo Province, South Africa | 61 |
3.2. Preparation and Administration of Plant-Based Remedies
Scientific Name and Family | Plant Part and Method of Preparation | Life Form | Countries | Reference |
---|---|---|---|---|
Aloe ferox Mill. Xanthorrhoeaceae | The liquid from the leaves is boiled to powder and soaked in water, and ½ of a cup of decoction is taken orally. | Shrub | South Africa and Mauritius | [39,46,59] |
Aloe vera Xanthorrhoeaceae | Excision and incision wounds and the wounds were treated with extract of A. vera for specific days. | Shrub | South Africa, Kenya, Senegal, and Madagascar | [3,39,49,53] |
Allium sativum L. Amaryllidaceae | A fresh plant is crushed and boiled, and ½ of a cup of decoction is taken orally. | Herb | Benin, South Africa, Morocco, Kenya, Sudan, Nigeria Togo, Senegal, and Ethiopia | [2,39,49,50,51,52,53,54,55] |
Ajuga remota Benth. Lamiaceae | Leaves and whole plant; decoction. | Herb | Kenya and Ethiopia | [53,60] |
Olea europaea L. Oleaceae | Roots and bark; decoction. | Shrub | Kenya and Morocco | [2,53] |
Cassia singueana Delile. syn. Senna singueana Caesalpiniaceae | Plant part is boiled and consumed orally. | Tree | Nigeria and Kenya | [53,61] |
Khaya senegalensis A. Juss. Meliaceae | Decoction made of K. senegalensis stem bark and garlic is taken orally. | Tree | Togo and Nigeria | [52,62] |
Parkia biglobosa (Jacq.) G. Don. Fabaceae | Decoction made of P. biglobosa leaf and garlic is taken orally. | Tree | Togo and Nigeria | [52,62] |
Mangifera indica Lam. Moringaceae | Leaves are infused and orally taken. | Tree | Guinea, Senegal, and Nigeria | [49,63,64] |
Sclerocarya birrea A. Rich. Hochst. Anacardiaceae | Leaves and bark. | Tree | Senegal, South Africa, and Cameroon | [49,65,66] |
4. Ethnopharmacological Insights into African Medicinal Plants in the Management of Diabetes Mellitus
4.1. Carbohydrate Digestive Enzyme-Inhibitory Activity of African Medicinal Plants
Name of Compound | Chemical Structure | Plant, Plant Part | Biological Assay and Response | Reference |
---|---|---|---|---|
Apigenin (1) | Agave americana L. leaves | α-amylase | Sahnoun et al. [67] | |
Combretin B (2) | Combretum fragans F. Hoffm leaves | α-glucosidase Antihyperglycemic Antioxidant | Dawé et al. [83] | |
Kaempferol (3) | Bryophyllum pinnatum (Lam.) Oken. leaves | α-Glucosidase α-Amylase Antihyperlipidemic, Antioxidant | Ibitoye et al. [84] | |
Quercetin (4) | Bryophyllum pinnatum (Lam.) Oken. Leaves | α-amylase α-glucosidase | Ibitoye et al. [84] |
4.2. Dipeptidyl Peptidase IV-Inhibitory Potential of African Medicinal Plants
4.3. Protein Tyrosine Phosphatase IB-Inhibitory Activity of African Medicinal Plants
4.4. Effect of African Medicinal Plants on Peroxisome Proliferator-Activated Receptors
4.5. Effects of African Medicinal Plants on Metabolic Tissues
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tabish, S.A. Lifestyle Diseases: Consequences, characteristics, causes and control. J. Cardiol. Curr. Res. 2017, 9, 00326. [Google Scholar]
- Idm’hand, E.; Msanda, F.; Cherifi, K. Ethnopharmacological review of medicinal plants used to manage diabetes in Morocco. Clin. Phytoscience 2020, 6, 18. [Google Scholar] [CrossRef]
- Oguntibeju, O.O. Hypoglycaemic and anti-diabetic activity of selected African medicinal plants. Int. J. Physiol. Pathophysiol. Pharmacol. 2019, 11, 224–237. [Google Scholar] [PubMed]
- Formichi, C.; Trimarchi, A.; Maccora, C.; Nigi, L.; Dotta, F. Environmental factors in the development of diabetes mellitus. In Environmental Alteration Leads to Human Disease; Sustainable Development Goals, Series; Ingegnoli, V., Lombardo, F., La Torre, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 275–317. [Google Scholar]
- Alwan, A. Global Status Report on Noncommunicable Diseases 2010; Alwan, A., Ed.; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.J.; Al-Mamun, M.; Islam, M.R. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused. Health Sci. Rep. 2024, 7, e2004. [Google Scholar] [CrossRef]
- Kufe, N.C.; Ngufor, G.; Mbeh, G.; Mbanya, J.C. Distribution and patterning of noncommunicable disease risk factors in indigenous Mbororo and nonautochthonous populations in Cameroon: Cross sectional study. BMC Public. Health 2016, 16, 3738–3751. [Google Scholar] [CrossRef]
- Ali, M.K.; Weber, M.M.; Narayan, K.M.V. The global burden of diabetes. In Textbook of Diabetes, 4th ed.; Holt, R.I.G., Cockram, C.S., Flyvbjerg, A., Goldstein, B.J., Eds.; John Wiley & Sons Ltd.: West Sussex, UK, 2017; pp. 69–84. [Google Scholar]
- The Lancet. Diabetes: A defining disease of the 21st century. Lancet 2023, 401, 2087. [Google Scholar]
- WHO. WHO’s Global Health Estimates: The Top 10 Causes of Death; WHO’s Global Health Estimates: Geneva, Switzerland, 2020. [Google Scholar]
- Mishra, A.K.; Pandey, M.; Pannu, A.; Dewangan, H.K.; Sahoo, P. Review on Diabetes Mellitus: An insight into the current scenarios, the challenges of therapy, and application of traditional drugs. Curr. Tradit. Med. 2024, 10, 107–128. [Google Scholar] [CrossRef]
- Gajbhiye, R.L.; Ganapathy, A.; Jaisankar, P. A review of alpha-glucosidase and alpha amylase inhibitors for Type 2 diabetes isolated from some important Indian medicinal plants. Ann. Clin. Pharmacol. Ther. 2018, 1, 1003. [Google Scholar]
- American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef]
- Amod, A.; Ascott-Evans, B.H.; Berg, G.I.; Blom, D.J.; Brown, S.L.; Carrihill, M.M.; Dave, J.A.; Distiller, L.A.; Ganie, Y.N.; Grobler, N.; et al. The 2012 SEMDSA guidelines for the management of Type 2 diabetes (Revised). J. Endocrinol. Metab. Diabetes S. Afr. 2012, 17, S1–S95. [Google Scholar]
- Guariguata L: By the numbers: New estimates from the IDF Diabetes Atlas Update for 2012. Diabetes Res. Clin. Pract. 2012, 98, 524–525. [CrossRef] [PubMed]
- Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: Global estimate of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. On behalf of the IDF Diabetes Atlas Committee, 2019. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Atlas. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- IDF. Internationa Diabetic Federation (IDF); Diabetes Atlas, 10th ed.; International Diabetes Federation: Geneva, Switzerland, 2021. [Google Scholar]
- IDF. International Diabetic Federation Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019. [Google Scholar]
- Uloko, A.E.; Musa, B.M.; Ramalan, M.A.; Gezawa, I.D.; Puepet, F.H.; Uloko, A.T.; Borodo, M.M.; Sada, K.B. Prevalence and risk factors for diabetes mellitus in Nigeria: A systematic review and meta-analysis. Diabetes Ther. 2018, 9, 1307–1316. [Google Scholar] [CrossRef]
- Sagandira, C.R.; Khasipo, A.Z.; Sagandira, M.B.; Watts, P. An overview of the synthetic routes to essential oral anti-diabetes drugs. Tetrahedron 2021, 96, 132378. [Google Scholar] [CrossRef]
- Hossain, M.A.; Pervin, R. Current antidiabetic drugs: Review of their efficacy and safety. In Nutritional and Therapeutic Intervention for Diabetes and Metabolic Syndrome, 2nd ed.; Bagchi, D., Nair, S., Eds.; Academic Press: Cambridge, MA, USA, 2018; Volume 34, pp. 455–473. [Google Scholar]
- Mohammed, A.; Mohammed, L.A.; Md Shahidul, I. African medicinal plants with antidiabetic potentials: A review. Planta Med. 2014, 80, 354–377. [Google Scholar] [CrossRef]
- Zhang, B.B.; Moller, D.E. New approaches in theb treatment of Type 2 diabetes. Curr. Opin. Chem. Biol. 2000, 4, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Mondal, P.; Bhuyan, N.; Das, S.; Kumar, M.; Borah, S.; Mahato, K. Herbal medicines useful for the treatment of diabetes in North-east India: A review. Int. J. Pharm. Biol. Sci. 2013, 3, 575–589. [Google Scholar]
- Awah, P.K.; Unwin, N.C.; Phillimore, P.R. Diabetes Mellitus: Indigenous naming, indigenous diagnosis and self-management in an African setting: The example from Cameroon. BMC Endocr. Disord. 2009, 9, 5. [Google Scholar] [CrossRef]
- Frimpong, E.; Nlooto, M. Management of diabetes and hypertension among Zulu traditional health practitioners: A study of focus group interviews. Ethiop. J. Health Dev. 2019, 33, 219–228. [Google Scholar]
- Awah, P.K. Treating Diabetes in Cameroon: A Comparative Study in Medical Anthropology. Ph.D. Thesis, Newcastle University, Newcastle upon Tyne, UK, 2006. [Google Scholar]
- Semenya, S.S.; Potgieter, M.; Erasmus, L. Ethnobotanical survey of medicinal plants used by Bapedi healers to treat diabetes mellitus in the Limpopo Province, South Africa. J. Ethnopharmacol. 2012, 141, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Mudau, T.; Olowoyo, J.; Amoo, S. Ethnobotanical assessment of medicinal plants used traditionally for treating diabetes in Vhembe district, Limpopo Province, South Africa. S. Afr. J. Bot. 2022, 146, 304–324. [Google Scholar] [CrossRef]
- Peltzer, K.; Khoza, L.; Lekhuleni, M.; Madu, S.; Cherian, V.; Cherian, L. Concepts and treatment for diabetes among traditional and faith healers in the Northern Province, South Africa. Curationis 2001, 24, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Samsu, N. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment. BioMed Res. Int. 2021, 2021, 1497449. [Google Scholar] [CrossRef] [PubMed]
- Che, C.-T.; George, V.; Ijinu, T.; Pushpangadan, P.; Andrae-Marobela, K. Traditional medicine. In Pharmacognosy: Fundamentals, Applications, and Strategies, 2nd ed.; McCreath, S.B., Clement, Y.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 11–28. [Google Scholar]
- Lin, C.-H.; Chang, Y.-C.; Chuang, L.-M. Early detection of diabetic kidney disease: Present limitations and future perspectives. World J. Diabetes 2016, 7, 290. [Google Scholar] [CrossRef]
- Gosmanov, A.R.; Wan, J. Low positive predictive value of hemoglobin A1c for diagnosis of prediabetes in clinical practice. Am. J. Med. Sci. 2014, 348, 191–194. [Google Scholar] [CrossRef]
- Tucker, L.A. Limited agreement between classifications of diabetes and prediabetes resulting from the OGTT, hemoglobin A1c, and fasting glucose tests in 7412 US adults. J. Clin. Med. 2020, 9, 2207. [Google Scholar] [CrossRef]
- Balogun, F.O.; Tshabalala, N.T.; Ashafa, A.O.T. Antidiabetic medicinal plants used by the Basotho tribe of Eastern Free State: A review. J. Diabetes Res. 2016, 2016, 13. [Google Scholar] [CrossRef]
- Oyedemi, S.; Bradley, G.; Afolayan, A. Ethnobotanical survey of medicinal plants used for the management of diabetes mellitus in the Nkonkobe municipality of South Africa. J. Med. Plants Res. 2009, 3, 1040–1044. [Google Scholar]
- Asong, J.A.; Ndhlovu, P.T.; Khosana, N.S.; Aremu, A.O.; Otang-Mbeng, W. Medicinal plants used for skin-related diseases among the Batswanas in Ngaka Modiri Molema District Municipality, South Africa. S. Afr. J. Bot. 2019, 126, 11–20. [Google Scholar] [CrossRef]
- Maroyi, A. An ethnobotanical survey of medicinal plants used by the people in Nhema communal area, Zimbabwe. J. Ethnopharmacol. 2011, 136, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Tshidzumba, P.W. An Inventory and Pharmacological Evaluation of Medicinal Plants Used as Anti-Diabetes and Anti-Arthritis in Vhembe District Municipality, Limpopo Province; University of Venda: Thohoyandou, South Africa, 2018. [Google Scholar]
- Mohammed, A.; Tajuddeen, N. Antidiabetic compounds from medicinal plants traditionally used for the treatment of diabetes in Africa: A review update (2015–2020). S. Afr. J. Bot. 2022, 146, 585–602. [Google Scholar] [CrossRef]
- Abouzekry, S.S.; Badawy, M.T.; Ezzelarab, N.M.; Abdellatif, A. Phytotherapy for diabetes mellitus; A review of Middle Eastern and North African folk medicinal plants. J. Herbmed Pharmacol. 2021, 10, 1–13. [Google Scholar] [CrossRef]
- Chukwuma, C.I.; Matsabisa, M.G.; Ibrahim, M.A.; Erukainure, O.L.; Chabalala, M.H.; Islam, M.S. Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: A review. J. Ethnopharmacol. 2019, 235, 329–360. [Google Scholar] [CrossRef] [PubMed]
- Seetaloo, A.; Aumeeruddy, M.; Kannan, R.R.; Mahomoodally, M. Potential of traditionally consumed medicinal herbs, spices, and food plants to inhibit key digestive enzymes geared towards diabetes mellitus management-A systematic review. S. Afr. J. Bot. 2019, 120, 3–24. [Google Scholar] [CrossRef]
- Semenya, S.S.; Maroyi, A. A review of plants used against diabetes mellitus by Bapedi and Vhavenda ethnic groups in the Limpopo Province, South Africa. Asian J. Pharm. Clin. Res. 2019, 12, 44–50. [Google Scholar] [CrossRef]
- Weckerle, C.S.; de Boer, H.J.; Puri, R.K.; van Andel, T.; Bussmann, R.W.; Leonti, M. Recommended standards for conducting and reporting ethnopharmacological field studies. J. Ethnopharmacol. 2018, 210, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Dièye, A.M.; Sarr, A.; Diop, S.N.; Ndiaye, M.; Sy, G.Y.; Diarra, M.; Rajraji/Gaffary, I.; Ndiaye/Sy, A.; Faye, B. Medicinal plants and the treatment of diabetes in Senegal: Survey with patients. Fundam. Clin. Pharmacol. 2008, 22, 211–216. [Google Scholar] [CrossRef]
- Ebrahim, A.M.; Eltayeb, M.H.; Khalid, H.; Mohamed, H.; Abdalla, W.; Grill, P.; Michalke, B. Study on selected trace elements and heavy metals in some popular medicinal plants from Sudan. J. Nat. Med. 2012, 66, 671–679. [Google Scholar] [CrossRef]
- Gbolade, A.A. Inventory of antidiabetic plants in selected districts of Lagos State, Nigeria. J. Ethnopharmacol. 2009, 121, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Karou, S.D.; Tchacondo, T.; Djikpo Tchibozo, M.A.; Abdoul-Rahaman, S.; Anani, K.; Koudouvo, K.; Batawila, K.; Agbonon, A.; Simpore, J.; de Souza, C. Ethnobotanical study of medicinal plants used in the management of diabetes mellitus and hypertension in the Central Region of Togo. Pharm. Biol. 2011, 49, 1286–1297. [Google Scholar] [CrossRef]
- Keter, L.K.; Mutiso, P.C. Ethnobotanical studies of medicinal plants used by Traditional Health Practitioners in the management of diabetes in Lower Eastern Province, Kenya. J. Ethnopharmacol. 2012, 139, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Lawin, I.; Lalèyè, F.; Agbani, O.; Assogbadjo, A. Ethnobotanical assessment of the plant species used in the treatment of diabetes in the Sudano-Guinean zone of Benin. J. Anim. Plant Sci. 2015, 26, 4108–4123. [Google Scholar]
- Meshesha, S.G.; Yeshak, M.Y.; Gebretekle, G.B.; Tilahun, Z.; Fenta, T.G. Concomitant use of herbal and conventional medicines among patients with diabetes mellitus in public hospitals of Addis Ababa, Ethiopia: A cross-sectional study. Evid.-Based Complement. Altern. Med. 2020, 2020, 4871459. [Google Scholar] [CrossRef] [PubMed]
- Lawal, I.O.; Olufade, I.I.; Rafiu, B.O.; Aremu, A.O. Ethnobotanical survey of plants used for treating cough associated with respiratory conditions in Ede South local government area of Osun State, Nigeria. Plants 2020, 9, 647. [Google Scholar] [CrossRef] [PubMed]
- Boadu, A.A.; Asase, A. Documentation of herbal medicines used for the treatment and management of human diseases by some communities in southern Ghana. Evid. -Based Complement. Altern. Med. 2017, 2017, 3043061. [Google Scholar] [CrossRef]
- Chauke, M.A.; Shai, L.J.; Mogale, M.A.; Tshisikhawe, M.P.; Mokgotho, M.P. Medicinal plant use of villagers in the Mopani district, Limpopo Province, South Africa. Afr. J. Tradit. Complement. Altern. Med. 2015, 12, 9–26. [Google Scholar] [CrossRef]
- Deutschländer, M.S.; Lall, N.; van de Venter, M. Plant species used in the treatment of diabetes by South African traditional healers: An inventory. Pharm. Biol. 2009, 47, 348–365. [Google Scholar] [CrossRef]
- Tafesse, T.B. Antidiabetic Activity and Phytochemical Screening of Crude Extracts of Stevia rebaudiana Bertoni and Ajuga remota Benth Grown in Ethiopia on Alloxan-Induced Diabetic Mice. Master’s Thesis, Medicinal Chemistry, Department of Pharmaceutical Chemistry, School of Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Etuk, E.; Bello, S.; Isezuo, S. Ethnobotanical survey of medicinal plants used for the treatment of diabetes mellitus in the North Western region of Nigeria. Asian J. Exp. Biol. Sci. 2010, 1, 55–59. [Google Scholar]
- Makinde, S.; Ojekale Ab Osinake, T.; Awusinu, T. An ethnomedical and ethnobotanical survey of plants herbal therapy used for obesity, asthma, diabetes and fertility by the Badagry people of Lagos State, Nigeria. J. Med. Plants Stud. 2015, 3, 1–6. [Google Scholar]
- Diallo, A.; Traore, M.S.; Keita, S.M.; Balde, M.A.; Keita, A.; Camara, M.; Van Miert, S.; Pieters, L.; Balde, A.M. Management of diabetes in Guinean traditional medicine: An ethnobotanical investigation in the coastal lowlands. J. Ethnopharmacol. 2012, 144, 353–361. [Google Scholar] [CrossRef]
- Arowosegbe, S.; Oyeyemi, S.; Alo, O. Investigation on the medicinal and nutritional potentials of some vegetables consumed in Ekiti State, Nigeria. Int. Res. J. Nat. Sci. 2015, 3, 16–30. [Google Scholar]
- Nyakudya, T.T.; Tshabalala, T.; Dangarembizi, R.; Erlwanger, K.H.; Ndhlala, A.R. The potential therapeutic value of medicinal plants in the management of metabolic disorders. Molecules 2020, 25, 2669. [Google Scholar] [CrossRef] [PubMed]
- Dimo, T.; Rakotonirina, S.V.; Tan, P.V.; Azay, J.; Dongo, E.; Kamtchouing, P.; Cros, G. Effect of Sclerocarya birrea (Anacardiaceae) stem bark methylene chloride/methanol extract on streptozotocin-diabetic rats. J. Ethnopharmacol. 2007, 110, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Sahnoun, M.; Saibi, W.; Brini, F.; Bejar, S. Apigenin isolated from A. americana encodes human and Aspergillus oryzae S2 α-amylase inhibitions: Credible approach for antifungal and antidiabetic therapies. J. Food Sci. Technol. 2018, 55, 1489–1498. [Google Scholar] [CrossRef]
- Beidokhti, M.; Lobbens, E.; Rasoavaivo, P.; Staerk, D.; Jäger, A. Investigation of medicinal plants from Madagascar against DPP-IV linked to Type 2 diabetes. S. Afr. J. Bot. 2018, 115, 113–119. [Google Scholar] [CrossRef]
- Kibiti, C.M.; Afolayan, A.J. Herbal therapy: A review of emerging pharmacological tools in the management of diabetes mellitus in Africa. Pharmacogn. Mag. 2015, 11, S258. [Google Scholar]
- Chandel, N.S. Carbohydrate metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040568. [Google Scholar] [CrossRef]
- Bischoff, H. The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clin. Investig. Med. 1995, 18, 303–311. [Google Scholar]
- Marles, R.J. Plants as sources of antidiabetic agents. Econ. Med. Plant Res. 1994, 6, 149–187. [Google Scholar]
- Mbagwu, I.S.; Akah, P.A.; Ajaghaku, D.L. Newbouldia laevis improved glucose and fat homeostasis in a Type-2 diabesity mice model. J. Ethnopharmacol. 2020, 251, 112555. [Google Scholar] [CrossRef]
- Mbagwu, I.S.; Akah, P.A.; Ajaghaku, D.L.; Ike, J.C.; Okoye, F.B.C. Newboulasides A and B, two new caffeic acid glycosides from Newbouldia laevis with α-amylase inhibitory activity. Nat. Prod. Res. 2022, 36, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Soladoye, M.; Chukwuma, E.; Owa, F. An ‘Avalanche’of plant species for the traditional cure of diabetes mellitus in South-Western Nigeria. J. Nat. Prod. Plant Resour. 2012, 2, 60–72. [Google Scholar]
- Abo, K.; Fred-Jaiyesimi, A.; Jaiyesimi, A. Ethnobotanical studies of medicinal plants used in the management of diabetes mellitus in South Western Nigeria. J. Ethnopharmacol. 2008, 115, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.; Owegby, A.; Parimoo, P.; Waterman, P. Kolanone, a novel polyisoprenylated benzophenone with antimicrobial properties from the fruit of Garcinia kola. Planta Medica 1982, 44, 78–81. [Google Scholar] [CrossRef]
- Iwu, M.; Igboko, O. Flavonoids of Garcinia kola seeds. J. Nat. Prod. 1982, 45, 650–651. [Google Scholar] [CrossRef]
- Waterman, P.G.; Hussain, R.A. Systematic significance of xanthones, benzophenones and biflavonoids in Garcinia. Biochem. Syst. Ecol. 1983, 11, 21–28. [Google Scholar] [CrossRef]
- Adaramoye, O. Antidiabetic effect of kolaviron, a biflavonoid complex isolated from Garcinia kola seeds, in Wistar rats. Afr. Health Sci. 2012, 12, 498–506. [Google Scholar] [CrossRef]
- Iwu, M.M.; Igboko, O.A.; Okunji, C.O.; Tempesta, M.S. Antidiabetic and aldose reductase activities of biflavanones of Garcinia kola. J. Pharm. Pharmacol. 1990, 42, 290–292. [Google Scholar] [CrossRef]
- Salau, V.F.; Erukainure, O.L.; Koorbanally, N.A.; Islam, M.S. Kolaviron modulates dysregulated metabolism in oxidative pancreatic injury and inhibits intestinal glucose absorption with concomitant stimulation of muscle glucose uptake. Arch. Physiol. Biochem. 2023, 129, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Dawé, A.; Mbiantcha, M.; Yakai, F.; Jabeen, A.; Ali, M.S.; Lateef, M.; Ngadjui, B.T. Flavonoids and triterpenes from Combretum fragrans with anti-inflammatory, antioxidant and antidiabetic potential. Z. Naturforsch C J. Biosci. 2018, 73, 211–219. [Google Scholar] [CrossRef]
- Ibitoye, O.; Olofinsan, K.; Teralı, K.; Ghali, U.; Ajiboye, T. Bioactivity-guided isolation of antidiabetic principles from the methanolic leaf extract of Bryophyllum pinnatum. J. Food Biochem. 2018, 42, e12627. [Google Scholar]
- Deacon, C.F. Dipeptidyl peptidase-4 inhibitors in the treatment of Type 2 diabetes: A comparative review. Diabetes Obes. Metab. 2011, 13, 7–18. [Google Scholar] [CrossRef]
- Mahomoodally, M.F.; Korumtollee, H.N.; Chady, Z.Z.B.K. Ethnopharmacological uses of Antidesma madagascariense Lam. (Euphorbiaceae). J. Intercult. Ethnopharmacol. 2015, 4, 86. [Google Scholar] [CrossRef] [PubMed]
- Gurib-Fakim, A.; Brendler, T. Medicinal and Aromatic Plants of Indian Ocean Islands. In Medpharm GmbH; Scientific Publishers: Stuttgart, Germany, 2004. [Google Scholar]
- Wang, C.H.; Wang, C.C.; Wei, Y.H. Mitochondrial dysfunction in insulin insensitivity: Implication of mitochondrial role in Type 2 diabetes. Ann. N. Y. Acad. Sci. 2010, 1201, 157–165. [Google Scholar] [CrossRef]
- Wade, F.; Belhaj, K.; Poizat, C. Protein tyrosine phosphatases in cardiac physiology and pathophysiology. Heart Fail. Rev. 2018, 23, 261–272. [Google Scholar] [CrossRef]
- Catarino, L.; Havik, P.J.; Romeiras, M.M. Medicinal plants of Guinea-Bissau: Therapeutic applications, ethnic diversity and knowledge transfer. J. Ethnopharmacol. 2016, 183, 71–94. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wu, Z.; Guo, B.; Sun, M.; Onakpa, M.M.; Yao, G.; Zhao, M.; Che, C.-T. Modified diterpenoids from the tuber of Icacina oliviformis as protein tyrosine phosphatase 1B inhibitors. Org. Chem. Front. 2020, 7, 355–367. [Google Scholar] [CrossRef]
- Tyagi, S.; Gupta, P.; Saini, A.S.; Kaushal, C.; Sharma, S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J. Adv. Pharm. Technol. Res. 2011, 2, 236. [Google Scholar] [CrossRef]
- Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPARγ signaling and metabolism: The good, the bad and the future. Nat. Med. 2013, 19, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Eldin, S.S.M.; Radwan, M.M.; Wanas, A.S.; Habib, A.-A.M.; Kassem, F.F.; Hammoda, H.M.; Khan, S.I.; Klein, M.L.; Elokely, K.M.; ElSohly, M.A. Bioactivity-guided isolation of potential antidiabetic and antihyperlipidemic compounds from Trigonella stellata. J. Nat. Prod. 2018, 81, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Ashcroft, F.M.; Rohm, M.; Clark, A.; Brereton, M.F. Is Type 2 diabetes a glycogen storage disease of pancreatic β cells? Cell Metab. 2017, 26, 17–23. [Google Scholar] [CrossRef]
- Kasangana, P.B.; Haddad, P.S.; Eid, H.M.; Nachar, A.; Stevanovic, T. Bioactive pentacyclic triterpenes from the root bark extract of Myrianthus arboreus, a species used traditionally to treat Type-2 diabetes. J. Nat. Prod. 2018, 81, 2169–2176. [Google Scholar] [CrossRef] [PubMed]
- Kasangana, P.B.; Eid, H.M.; Nachar, A.; Stevanovic, T.; Haddad, P.S. Further isolation and identification of anti-diabetic principles from root bark of Myrianthus arboreus P. Beauv.: The ethyl acetate fraction contains bioactive phenolic compounds that improve liver cell glucose homeostasis. J. Ethnopharmacol. 2019, 245, 112167. [Google Scholar] [CrossRef]
- Sohn, J.-H.; Kim, T.-Y. Recent update on pathogenesis of nonalcoholic fatty liver disease. Korean J. Med. 2010, 79, 461–474. [Google Scholar]
- Lee, S.-M.; Do, H.J.; Shin, M.-J.; Seong, S.-I.; Hwang, K.Y.; Lee, J.Y.; Kwon, O.; Jin, T.; Chung, J.H. 1-Deoxynojirimycin isolated from a Bacillus subtilis stimulates adiponectin and GLUT4 expressions in 3T3-L1 adipocytes. J. Microbiol. Biotechnol. 2013, 23, 637–643. [Google Scholar] [CrossRef]
- Sekii, Y.; Han, J.; Isoda, H.; Bouaziz, M.; Dhouib, A.; Sayadi, S.; Shigemori, H. Two isorhamnetin glycosides from Arthrocnemum glaucum that inhibit adipogenesis in 3T3-L1 adipocytes. Chem. Nat. Compd. 2015, 51, 338–340. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asong, J.A.; Ndhlovu, P.T.; Olatunde, A.; Aremu, A.O. Uses of African Plants and Associated Indigenous Knowledge for the Management of Diabetes Mellitus. Diabetology 2024, 5, 476-490. https://doi.org/10.3390/diabetology5050035
Asong JA, Ndhlovu PT, Olatunde A, Aremu AO. Uses of African Plants and Associated Indigenous Knowledge for the Management of Diabetes Mellitus. Diabetology. 2024; 5(5):476-490. https://doi.org/10.3390/diabetology5050035
Chicago/Turabian StyleAsong, John Awungnjia, Peter Tshepiso Ndhlovu, Ahmed Olatunde, and Adeyemi Oladapo Aremu. 2024. "Uses of African Plants and Associated Indigenous Knowledge for the Management of Diabetes Mellitus" Diabetology 5, no. 5: 476-490. https://doi.org/10.3390/diabetology5050035
APA StyleAsong, J. A., Ndhlovu, P. T., Olatunde, A., & Aremu, A. O. (2024). Uses of African Plants and Associated Indigenous Knowledge for the Management of Diabetes Mellitus. Diabetology, 5(5), 476-490. https://doi.org/10.3390/diabetology5050035