A Study of the Inhibition Capacity of a Novel Ilex guayusa Green Extract for Preventing Corrosion in Mild Steel Exposed to Different Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of the Extract
2.3. Preparation of the Metallic Samples
2.4. Chemical Characterization of the Extract
2.5. Calculation of the Corrosion Rate
2.6. Statical Analysis
2.7. Corrosion Inhibition Mechanism
3. Results
3.1. Chemical Characterization of the Plant Extract
3.2. Analysis of the Rate of Corrosion
3.3. Analysis of the Efficiency of Corrosion Protection
3.4. Analysis of the Effect of the Environment on Corrosion Resistance
3.5. Results of the Corrosion Inhibition Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agraje, Z.; Barahona, I.; Quíroz, J.; Pino, H.; Hernández, C.; Saavedra, C. Análisis comparativo de inhibidores verdes vs inhibidores tradicionales en la corrosión de los metals. Rev. Iniciación Científica 2020, 5, 83–89. [Google Scholar] [CrossRef]
- Ma, X.; Xu, J. Impact of Environmental Regulation on High-Quality Economic Development. Front. Environ. Sci. 2022, 10, 896892. [Google Scholar] [CrossRef]
- Fayomi, O.S.I.; Akande, I.G.; Odigie, S. Economic Impact of Corrosion in Oil Sectors and Prevention: An Overview. J. Phys. Conf. Ser. 2019, 1378, 022037. [Google Scholar] [CrossRef]
- Bowman, E.; Thompson, N.; Gl, D.; Moghissi, O.; Gould, M.; Payer, J. International Measures of Prevention, Application, and Economics of Corrosion Technologies Study; Jacobson, G., Ed.; NACE International: Houston, TX, USA, 2016; p. TX-77064. [Google Scholar]
- Kimbell, L.; Wang, Y.; Mcnamara, P.J. The Impact of Metal Pipe Materials, Corrosion Products, and The Impact of Metal Pipe Materials, Corrosion Products, and Corrosion Inhibitors on Antibiotic Resistance in Drinking Water Corrosion Inhibitors on Antibiotic Resistance in Drinking Water Distribution Systems Distribution Systems. Appl. Microbiol. Biotechnol. 2020, 104, 7673–7688. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, R.; Zhang, Q.; Zhao, C.; Zhou, X.; Zheng, H.; Zhang, R.; Sun, Y.; Yan, Z. Application of Biomass Corrosion Inhibitors in Metal Corrosion Control: A Review. Molecules 2023, 28, 2832. [Google Scholar] [CrossRef]
- Ojo, F.K.; Adejoro, I.A.; Lori, J.A.; Oyeneyin, O.E.; Akpomie, K.G. Indole Derivatives as Organic Corrosion Inhibitors of Low Carbon Steel in HCl Medium-Experimental and Theoretical Approach. Chem. Afr. 2022, 5, 943–956. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Quraishi, M.; Srivastava, V.; Haque, J.; El Ibrahimi, B. Virgin and chemically functionalized amino acids as green corrosion inhibitors: Influence of molecular structure through experimental and in silico studies. J. Mol. Struct. 2022, 1226, 129259. [Google Scholar] [CrossRef]
- Alao, A.O.; Popoola, A.P.; Dada, M.O.; Sanni, O. Utilization of green inhibitors as a sustainable corrosion control method for steel in petrochemical industries: A review. Front. Energy 2023, 10, 1063315. [Google Scholar] [CrossRef]
- Mrani, S.A.; Arrousse, N.; Haldhar, R.; Lahcen, A.A.; Amine, A.; Saffaj, T.; Kim, S.C.; Taleb, M. In Silico Approaches for Some Sulfa Drugs as Eco-Friendly Corrosion Inhibitors of Iron in Aqueous Medium. Lubricants 2022, 10, 43. [Google Scholar] [CrossRef]
- Zhiji, T.; Weilong, H.; Lin, L.; Huichen, L.; Hongliang, M.; Tianxiang, Z.; Xinyun, Y.; Qiuhua, J.; Ye, Y.; Yuehua, L. Study on structure and molecular scale protection mechanism of green Ce,N-CDs anti-bacterial and anti-corrosive inhibitor. J. Mater. Res. Technol. 2024, 32, 3865–3881. [Google Scholar] [CrossRef]
- Zhiji, T.; Weilong, H.; Lin, L.; Huichen, L.; Hongliang, M.; Tianxiang, Z.; Xinyun, Y.; Qiuhua, J.; Ye, Y.; Yuehua, L. A green and effective anti-corrosion and anti-microbial inhibitor of citric acid-based carbon dots: Experiment and mechanism analysis. J. Mater. Res. Technol. 2024, 28, 2149–2159. [Google Scholar] [CrossRef]
- Yuwei, Y.; Dawei, Z.; Yangjun, Z.; Haichao, Z.; Hao, C. A feasible method to improve the protection ability of metal by functionalized carbon dots as environment-friendly corrosion inhibitor. J. Clean. Prod. 2020, 264, 121682. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Hossain, N.; Iqbal, A.P. Determining Corrosion Efficiency of a Green Solution Prepared from Extract of Dalbergia Sissoo Leaves in H2SO4 and its Characterization. IUBAT Rev. 2023, 6, 77–87. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Xu, N.; Jiang, Z.N.; Liu, H.F.; Zhang, G.A. Chitosan derivatives as promising green corrosion inhibitors for carbon steel in acidic environment: Inhibition performance and interfacial adsorption mechanism. J. Colloid Interface Sci. 2023, 640, 1052–1067. [Google Scholar] [CrossRef]
- Sharma, S.; Solanki, A.S.; Sharma, S.K. Anticorrosive action of eco-friendly plant extracts on mild steel in different concentrations of hydrochloric acid. Corros. Rev. 2024, 42, 185–201. [Google Scholar] [CrossRef]
- Gabsi, M.; Ferkous, H.; Delimi, A.; Boublia, A.; Boulechfar, C.; Kahlouche, A.; Darwish, A.S.; Lemaoui, T.; Benguerba, Y. The curious case of polyphenols as green corrosion inhibitors: A review on their extraction, design, and applications. Environ. Sci. Pollut. Res. 2023, 30, 59081–59105. [Google Scholar] [CrossRef]
- Abdel-Gaber, A.M.; Ezzat, A.; Mohamed, M.E. Fenugreek seed and cape gooseberry leaf extracts as green corrosion inhibitors for steel in the phosphoric acid industry. Sci. Rep. 2022, 12, 22251. [Google Scholar] [CrossRef]
- Liao, B.; Luo, Z.; Wan, S.; Chen, L. Insight into the anti-corrosion performance of Acanthopanax senticosus leaf extract as eco-friendly corrosion inhibitor for carbon steel in acidic medium. J. Ind. Eng. Chem. 2023, 117, 238–246. [Google Scholar] [CrossRef]
- Hameed, R.S.A.; Aleid, G.M.S.; Mohammad, D.; Badr, M.M.; Huwaimel, B.; Suliman, M.S.; Alshammary, F.; Abdallah, M. Spinacia oleracea Extract as Green Corrosion Inhibitor for Carbon Steel in Hydrochloric Acid Solution. Int. J. Electrochem. Sci. 2023, 17, 221017. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Sharma, P.; Guo, L.; Dagdag, O.; Kumar, V. Molecular dynamic simulation and Quantum chemical calculation of phytochemicals present in Beta vulgaris and electrochemical behaviour of Beta vulgaris peel extract as green corrosion inhibitor for stainless steel (SS-410) in acidic medium. Colloids Surf. A Physicochem. Eng. Asp. 2022, 632, 127707. [Google Scholar] [CrossRef]
- Armijos, C.; Ramírez, J.; Salinas, M.; Vidari, G.; Suárez, A.I. Pharmacology and phytochemistry of ecuadorian medicinal plants: An update and perspectives. Pharmaceuticals 2021, 14, 1145. [Google Scholar] [CrossRef] [PubMed]
- Njoku, C.N.; Ikeuba, A.I.; Anorondu, C.C.; Shammah, I.C.; Yakubu, E.; Elendu, B.N.; Enechukwu, C.S.; Uduma, I.O.; Uzor, P.C. A review of the extraction and application of eco-friendly biomass for corrosion protection of metals. Results Chem. 2024, 7, 101286. [Google Scholar] [CrossRef]
- Al-Mashhadani, H.A.; Alshujery, M.K.; Khazaal, F.A.; Salman, A.M.; Kadhim, M.M.; Abbas, Z.M.; Farag, S.K.; Hussien, H.F. Anti-Corrosive Substance as Green Inhibitor for Carbon Steel in Saline and Acidic Media. J. Phys. Conf. Ser. 2021, 1818, 012128. [Google Scholar] [CrossRef]
- Malaret, F. Exact calculation of corrosion rates by the weight-loss method. Exp. Results 2022, 3, e13. [Google Scholar] [CrossRef]
- ASTM. Standard Guide for Laboratory Immersion Corrosion Testing of Metals, G31-12a; ASTM International: West Conshohocken, PA, USA, 2012; pp. 1–10. [Google Scholar]
- Loto, R.T. Evaluation of the corrosion inhibition effect of the combined admixture of rosemary and cinnamon cassia oil on mild steel in weak acid electrolyte. Sustain. Chem. Pharm. 2020, 17, 100298. [Google Scholar] [CrossRef]
- Viteri, J.H.; Cotolan, N.; Lupan, A.; Brânzanic, A.M.V.; Turdean, G.L. A poly (methyl methacrylate)–ibuprofen composite film as anticorrosive coating of Ti–6Al–4 V surface. J. Solid State Electrochem. 2024, 28, 479–494. [Google Scholar] [CrossRef]
- Nabin, K.; Shova, N.; Dipak, K.; Anju, D.; Sanjay, S.; Gayatri, M.; Yogesh, C.; Amar, P. Berberine isolated from Mahonia nepalensis as an eco-friendly and thermally stable corrosion inhibitor for mild steel in acid medium. Arab. J. Chem. 2021, 14, 12. [Google Scholar] [CrossRef]
- Chapagain, D.A.; Anju, K.; Kisan, C.H.; Amar, P. Alkaloid of Rhynchostylis retusa as Green Inhibitor for Mild Steel Corrosion in 1 M H2SO4 Solution. Electrochem 2022, 3, 211–224. [Google Scholar] [CrossRef]
- Davilal, P.; Srijana, S.; Hari, B.; Dilip, S.; Deval, P.; Arjun, P.T.; Amar, Y. Comparative Study of Corrosion Inhibition Efficacy of Alkaloid Extract of Artemesia vulgaris and Solanum tuberosum in Mild Steel Samples in 1 M Sulphuric Acid. Electrochem 2022, 3, 416–433. [Google Scholar] [CrossRef]
- Thapa, B.; Gupta, D.K.; Yadav, A.P. Corrosion Inhibition of Bark Extract of Euphorbia royleana on Mild Steel in 1M HCl. J. Nepal Chem. Soc. 2019, 40, 25–29. [Google Scholar] [CrossRef]
- Mondal, S.; Genton, M.G. A multivariate skew-normal-Tukey-h distribution. J. Multivar. Anal. 2024, 200, 105260. [Google Scholar] [CrossRef]
- Avdeev, Y.G.; Nenasheva, T.A.; Luchkin, A.Y.; Marshakov, A.I.; Kuznetsov, Y.I. Thin 1,2,4-Triazole Films for the Inhibition of Carbon Steel Corrosion in Sulfuric Acid Solution. Coatings 2023, 13, 1221. [Google Scholar] [CrossRef]
- Michael Ajayi, O.; Kolawole Odusote, J.; Abolore Yahya, R. Inhibition of mild steel corrosion using Jatropha Curcas leaf extract. J. Electrochem. Sci. Eng. 2014, 4, 67–74. [Google Scholar] [CrossRef]
- Zultiniar; Sandy, M.K.; Wibowo, E.; Heltina, D.; Komalasari. Coconut Fiber Extraction using Soda Pulping Method as Green Corrosion Inhibitor for ASTM A36 Steel. J. Phys. Conf. Ser. 2019, 2049, 012094. [Google Scholar] [CrossRef]
- Ge, S.-W.; Hu, P.; Deng, J.; Li, S.-L.; Xing, H.-R.; Han, J.-Y.; Hua, X.-J.; Wang, L.; Yang, J.-Z.; Jin, B.; et al. The effect of secondary phase on corrosion behaviors of the titanium–zirconium–molybdenum alloy. Tungsten 2024, 6, 342–354. [Google Scholar] [CrossRef]
- Eduok, U.; Faye, O.; Szpunar, J. Corrosion inhibition of X70 sheets by a film-forming imidazole derivative at acidic pH. RSC Adv. 2016, 6, 108777–108790. [Google Scholar] [CrossRef]
- Chen, H.; Yu, Z.; Yang, G.; Liao, K.; Peng, B.; Pang, Y.; Zhu, L.; Tang, J. A novel pH-responsive smart anticorrosion coating based on sepiolite and MOF for high-performance corrosion protection. Surf. Coat. Technol. 2022, 446, 128768. [Google Scholar] [CrossRef]
- Rastogi, S.; Katara, A.; Pandey, M.M.; Arora, S.; Singh, R.R.B.; Rawat, A.K.S. Physical stability and HPLC analysis of Indian Kudzu (Pueraria tuberosa Linn.) fortified milk. Evid.-Based Complement. Altern. Med. 2013, 2013, 368248. [Google Scholar] [CrossRef]
Treatment | Essay |
---|---|
T1 (5% NaCl) | T1E1 (200 ppm 1) |
T1E2 (400 ppm) | |
T1E3 (600 ppm) | |
T1E4 (800 ppm) | |
T1E5 (1000 ppm) | |
T2 (5% NaCl + 1% Acetic Acid) | T2E1 (200 ppm) |
T2E2 (400 ppm) | |
T2E3 (600 ppm) | |
T2E4 (800 ppm) | |
T2E5 (1000 ppm | |
T3 (1% HNO3) | T3E1 (200 ppm) T3E2 (400 ppm) T3E3 (600 ppm) T3E4 (800 ppm) T3E5 (1000 ppm) |
T4 (10% HNO3) | T4E1 (200 ppm) T4E2 (400 ppm) T4E3 (600 ppm) T4E4 (800 ppm) T4E5 (1000 ppm) |
Corrosion Medium | pH |
---|---|
5% NaCl | |
Without Inhibitor | |
5% NaCl | 5.72 |
With Inhibitor | |
200 ppm | 4.63 |
400 ppm | 4.21 |
600 ppm | 3.92 |
800 ppm | 3.71 |
1000 ppm | 3.53 |
5% NaCl + Acetic Acid | |
Without Inhibitor | |
5% NaCl + Acetic Acid | 2.55 |
With Inhibitor | |
200 ppm | 2.59 |
400 ppm | 2.62 |
600 ppm | 2.63 |
800 ppm | 2.64 |
1000 ppm | 2.66 |
1% HNO3 | |
Without Inhibitor | |
1% HNO3 | 0.54 |
With Inhibitor | |
200 ppm | 0.61 |
400 ppm | 0.61 |
600 ppm | 0.78 |
800 ppm | 0.79 |
1000 ppm | 0.81 |
10% HNO3 | |
Without Inhibitor | |
10% HNO3 | 0.044 |
With Inhibitor | |
200 ppm | 0.018 |
400 ppm | 0.072 |
600 ppm | 0.080 |
800 ppm | 0.108 |
1000 ppm | 0.176 |
Reactive | Composition | Use | Results |
---|---|---|---|
Wagner | Iodide (I2) and potassium iodide (KI) | Detection of Alkaloids | + |
Dragendorff | Bismuth (Bi) and Chloride acid (HCl) | Detection of Alkaloids | + |
Mayer | Chloride acid (HCl) and copper chloride (CuCl2) | Detection of Alkaloids | + |
Corrosion Rate Without Inhibitor, mm/year | Corrosion Rate with Different Concentration of Inhibitor, mm/year | ||||||||
---|---|---|---|---|---|---|---|---|---|
T1 | |||||||||
E1 | E2 | E3 | E4 | E5 | E1 | E2 | E3 | E4 | E5 |
0.060 | 0.066 | 0.030 | 0.034 | 0.246 | 0.044 | 0.021 | 0.020 | 0.015 | 0.032 |
0.055 | 0.041 | 0.052 | 0.056 | 0.062 | 0.032 | 0.009 | 0.016 | 0.012 | 0.014 |
0.077 | 0.044 | 0.064 | 0.037 | 0.116 | 0.029 | 0.018 | 0.012 | 0.012 | 0.011 |
T2 | |||||||||
E1 | E2 | E3 | E4 | E5 | E1 | E2 | E3 | E4 | E5 |
0.475 | 0.535 | 0.533 | 0.406 | 0.449 | 0.244 | 0.213 | 0.223 | 0.206 | 0.180 |
0.541 | 0.564 | 0.489 | 0.471 | 0.513 | 0.295 | 0.273 | 0.248 | 0.261 | 0.175 |
0.511 | 0.543 | 0.484 | 0.536 | 0.490 | 0.302 | 0.267 | 0.193 | 0.169 | 0.169 |
T3 | |||||||||
E1 | E2 | E3 | E4 | E5 | E1 | E2 | E3 | E4 | E5 |
1.594 | 1.545 | 1.752 | 1.584 | 1.383 | 1.249 | 1.237 | 1.248 | 1.271 | 1.260 |
1.686 | 1.704 | 1.581 | 1.718 | 1.562 | 1.231 | 1.237 | 1.203 | 1.303 | 1.237 |
1.531 | 1.301 | 1.664 | 1.548 | 1.421 | 0.996 | 1.197 | 1.220 | 1.254 | 1.324 |
T4 | |||||||||
E1 | E2 | E3 | E4 | E5 | E1 | E2 | E3 | E4 | E5 |
11.01 | 12.28 | 12.79 | 11.37 | 12.80 | 10.99 | 11.67 | 11.48 | 9.98 | 11.34 |
13.18 | 13.01 | 13.70 | 13.20 | 12.95 | 11.40 | 11.14 | 10.62 | 10.88 | 11.11 |
13.32 | 12.78 | 12.63 | 11.45 | 13.28 | 10.80 | 11.12 | 10.01 | 12.25 | 11.00 |
Sample | Essay (Concentration of Inhibitor) | ||||
---|---|---|---|---|---|
T1 | |||||
E1 | E2 | E3 | E4 | E5 | |
1 | 25.8507 | 68.2367 | 33.0840 | 56.6896 | 86.9495 |
2 | 41.9454 | 78.0075 | 67.4620 | 78.8260 | 77.4012 |
3 | 61.4100 | 59.1584 | 80.9406 | 68.2390 | 89.9961 |
Average | 43.0687 | 68.4675 | 60.4955 | 67.9182 | 84.7822 |
T2 | |||||
E1 | E2 | E3 | E4 | E5 | |
1 | 48.5289 | 60.0606 | 58.0631 | 49.2212 | 59.8975 |
2 | 45.4251 | 51.4909 | 49.2290 | 44.5618 | 65.8362 |
3 | 40.8638 | 50.7614 | 60.0946 | 68.4245 | 65.4974 |
Average | 44.9393 | 54.1043 | 55.7956 | 54.0692 | 63.7437 |
T3 | |||||
E1 | E2 | E3 | E4 | E5 | |
1 | 21.6519 | 19.9480 | 28.7764 | 19.7252 | 8.9083 |
2 | 26.9845 | 27.4232 | 23.9018 | 24.1786 | 20.8210 |
3 | 34.9027 | 7.9502 | 26.7209 | 19.0152 | 6.7816 |
Average | 27.8464 | 18.4405 | 26.4664 | 20.9730 | 12.1703 |
T4 | |||||
E1 | E2 | E3 | E4 | E5 | |
1 | 0.2037 | 4.9602 | 10.1764 | 12.1909 | 11.4141 |
2 | 13.5093 | 14.3576 | 22.4763 | 17.5095 | 14.2172 |
3 | 18.9050 | 12.9742 | 20.7159 | 6.9489 | 17.1454 |
Average | 10.8727 | 10.7640 | 17.7895 | 7.5838 | 14.2589 |
Tukey | |||
---|---|---|---|
− | |||
64.95 | 51.98 | ||
54.53 | 43.77 | ||
21.18 | 10.42 | ||
41.56 | |||
12.97 | 33.35 | ||
8.212 | |||
Tukey comparison value | |||
q(a,k,v) = 4.05 | CME = 80.66 | √(CME/n) = 4.02 | q(a,k,v)*√(CME/n) = 16.27 |
Tukey result to identify if the corrosive medium affects the inhibitor | |||
51.98 > 16.27 | There is a significant difference between the means | ||
43.77 > 16.27 | There is a significant difference between the means | ||
10.42 > 16.27 | There is not a significant difference between the means | ||
41.56 > 16.27 | There is a significant difference between the means | ||
33.35 > 16.27 | There is a significant difference between the means | ||
8.212 > 16.27 | There is not a significant difference between the means |
Sample | ic (A/cm2) | Ec (V) vs. Ag/AgCl/KClsat | bc (V/dec) | ba (V/dec) | Corrosion Rate (mm/year) | IE (%) |
---|---|---|---|---|---|---|
Blank | 0.027 | 0.227 | 0.131 | 0.140 | 4.86 | - |
Mild steel in 5% NaCl | 0.0032 | 0.344 | 0.202 | 0.217 | 0.37 | 88.15 |
Mild steel in 5% NaCl + 10% Acetic Acid | 0.0052 | 0.309 | 0.181 | 0.195 | 0.43 | 80.74 |
Mild steel in 1% Nitric Acid | 0.0075 | 0.275 | 0.161 | 0.173 | 1.29 | 72.22 |
Mild steel in 10% Nitric Acid | 0.013 | 0.234 | 0.137 | 0.147 | 2.58 | 51.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo, J.; Hidalgo, L.; Serrano, C.; Punina, D.; Rea, E.; Ilbay, M.; Vilasó-Cadre, J.E.; Reyes-Domínguez, I.A. A Study of the Inhibition Capacity of a Novel Ilex guayusa Green Extract for Preventing Corrosion in Mild Steel Exposed to Different Conditions. Analytica 2025, 6, 1. https://doi.org/10.3390/analytica6010001
Hidalgo J, Hidalgo L, Serrano C, Punina D, Rea E, Ilbay M, Vilasó-Cadre JE, Reyes-Domínguez IA. A Study of the Inhibition Capacity of a Novel Ilex guayusa Green Extract for Preventing Corrosion in Mild Steel Exposed to Different Conditions. Analytica. 2025; 6(1):1. https://doi.org/10.3390/analytica6010001
Chicago/Turabian StyleHidalgo, Juan, Luis Hidalgo, Carlos Serrano, Diego Punina, Erik Rea, Marlon Ilbay, Javier E. Vilasó-Cadre, and Ivan A. Reyes-Domínguez. 2025. "A Study of the Inhibition Capacity of a Novel Ilex guayusa Green Extract for Preventing Corrosion in Mild Steel Exposed to Different Conditions" Analytica 6, no. 1: 1. https://doi.org/10.3390/analytica6010001
APA StyleHidalgo, J., Hidalgo, L., Serrano, C., Punina, D., Rea, E., Ilbay, M., Vilasó-Cadre, J. E., & Reyes-Domínguez, I. A. (2025). A Study of the Inhibition Capacity of a Novel Ilex guayusa Green Extract for Preventing Corrosion in Mild Steel Exposed to Different Conditions. Analytica, 6(1), 1. https://doi.org/10.3390/analytica6010001