Monitoring of a Broad Set of Pharmaceuticals in Wastewaters by High-Resolution Mass Spectrometry and Evaluation of Heterogenous Catalytic Ozonation for Their Removal in a Pre-Industrial Level Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the “Aineias” WWTP and the Pre-Industrial Unit
2.2. Sampling
2.3. Chemicals, Reagents, and Materials
2.4. Analytical Procedure
2.4.1. Sample Pretreatment
2.4.2. LC-Orbitrap MS/MS Analysis
2.4.3. Quality Assurance/Quality Control (QA/QC) and Data Treatment
3. Results
3.1. Overview of the Occurrence of PhACs in the WWTP
3.1.1. Caffeine (Stimulant)
3.1.2. Non-Steroidal Anti-Inflammatory Drugs and Analgesics
3.1.3. Antihypertensive Drugs (β-Blockers and Sartans)
3.1.4. Psychiatric Drugs
3.1.5. Antibiotics
3.1.6. Other PhACs
3.2. Removal of PhACs
3.3. Catalytic Ozonation
3.4. Environmental Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AF | Assessment Factor |
AOPs | Advanced Oxidation Processes |
ARGs | Antibiotic Resistance Genes |
CECs | Contaminants of Emerging Concern |
DDD | Defined Daily Dose |
EWW | Effluent |
FS | Full-Scan |
IWW | Influent |
LMCL | Lowest Method Calibration Limit |
MDL | Method Detection Limit |
MEC | Measured Environmental Concentration |
MQL | Method Quantification Limit |
NOEC | Non-Observed Effective Concentrations |
OTC | Over-The-Counter |
PhACs | Pharmaceutically Active Substances |
PNEC | Predicted Non-Effect Concentration |
QA | Quality Assurance |
QC | Quality Control |
RQ | Risk Quotient |
tR | Retention Time |
UMCL | Upper Method Calibration Limit |
WBE | Wastewater-based epidemiology |
WFD | Water Framework Directive |
WL | Watch List |
WWTPs | Wastewater Treatment Plants |
References
- Quintiles IMS. Outlook for Global Medicines through 2021; Quintiles IMS Inst.: Durham, NC, USA, 2016; pp. 1–54. Available online: http://static.correofarmaceutico.com/docs/2016/12/12/qiihi_outlook_for_global_medicines_through_2021.pdf (accessed on 24 February 2022).
- Kosma, C.I.; Kapsi, M.G.; Konstas, P.-S.G.; Trantopoulos, E.P.; Boti, V.I.; Konstantinou, I.K.; Albanis, T.A. Assessment of multiclass pharmaceutical active compounds (PhACs) in hospital WWTP influent and effluent samples by UHPLC-Orbitrap MS: Temporal variation, removals and environmental risk assessment. Environ. Res. 2020, 191, 110152. [Google Scholar] [CrossRef] [PubMed]
- O’Flynn, D.; Lawler, J.; Yusuf, A.; Parle-McDermott, A.; Harold, D.; Cloughlin, T.M.; Holland, L.; Regan, F.; White, B. A review of pharmaceutical occurrence and pathways in the aquatic environment in the context of a changing climate and the COVID-19 pandemic. Anal. Methods 2021, 13, 575–594. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Water Quality and Wastewater. 2021. Available online: https://www.unwater.org/water-facts/quality-and-wastewater/ (accessed on 24 February 2022).
- Bodík, M.; Mackuľak, T.; Feher, M.; Staňová, A.V.; Grabicová, K.; Varjúová, D.; Bodík, I. Searching for the correlations between the use of different groups of pharmaceuticals from wastewaters. Ecotoxicol. Environ. Saf. 2021, 228, 112973. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Decision (EU) 2020/1161. Off. J. Eur. Union 2020, L257, 32–35. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2020.257.01.0032.01.ENG&toc=OJ:L:2020:257:TOC (accessed on 24 February 2022).
- Lashuk, B.; Yargeau, V. A review of ecotoxicity reduction in contaminated waters by heterogeneous photocatalytic ozonation. Sci. Total Environ. 2021, 787, 147645. [Google Scholar] [CrossRef]
- Nawrocki, J. Catalytic ozonation in water: Controversies and questions. Discussion paper. Appl. Catal. B Environ. 2013, 142–143, 465–471. [Google Scholar] [CrossRef]
- Ofrydopoulou, A.; Nannou, C.; Evgenidou, E.; Lambropoulou, D. Sample preparation optimization by central composite design for multi class determination of 172 emerging contaminants in wastewaters and tap water using liquid chromatography high-resolution mass spectrometry. J. Chromatogr. A 2021, 1652, 462369. [Google Scholar] [CrossRef]
- EN ISO/IEC 17025; General Requirements for the Competence of Testing and Calibration Laboratories. 3rd Version; International Organization for Standardization: Geneva, Switzerland, 2018.
- European Commission. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed, DG-SANTE/12682/2019. 2019. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf (accessed on 24 February 2022).
- Nannou, C.I.; Boti, V.I.; Albanis, T.A. A modified QuEChERS approach for the analysis of pharmaceuticals in sediments by LC-Orbitrap HRMS. Anal. Bioanal. Chem. 2019, 411, 1383–1396. [Google Scholar] [CrossRef]
- Buerge, I.J.; Poiger, T.; Müller, M.D.; Buser, H.-R. Caffeine, an Anthropogenic Marker for Wastewater Contamination of Surface Waters. Environ. Sci. Technol. 2003, 37, 691–700. [Google Scholar] [CrossRef]
- Baker, D.R.; Kasprzyk-Hordern, B. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: New developments. Sci. Total Environ. 2013, 454–455, 442–456. [Google Scholar] [CrossRef]
- Adeleye, A.S.; Xue, J.; Zhao, Y.; Taylor, A.A.; Zenobio, J.E.; Sun, Y.; Han, Z.; Salawu, O.A.; Zhu, Y. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. J. Hazard. Mater. 2021, 424, 127284. [Google Scholar] [CrossRef] [PubMed]
- WHO. Defined Daily Dose (DDD). Available online: https://www.who.int/tools/atc-ddd-toolkit/about-ddd, (accessed on 24 February 2022).
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res. 2009, 43, 363–380. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.L.; Aparicio, I.; Callejón, M.; Alonso, E. Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). J. Hazard. Mater. 2009, 164, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A.; Gupta, A.K.; Ghosal, P.S.; Varma, M. A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2. J. Environ. Chem. Eng. 2020, 9, 104812. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Zhou, Z.; Wang, Z.; Xu, Z.; Zheng, Q.; Li, X.; He, J.; Li, X.; Cheng, H.; Thai, P.K. Analysing wastewater to estimate fentanyl and tramadol use in major Chinese cities. Sci. Total Environ. 2021, 795, 148838. [Google Scholar] [CrossRef] [PubMed]
- Bayer, A.; Asner, R.; Schüssler, W.; Kopf, W.; Weiß, K.; Sengl, M.; Letzel, M. Behavior of sartans (antihypertensive drugs) in wastewater treatment plants, their occurrence and risk for the aquatic environment. Environ. Sci. Pollut. Res. 2014, 21, 10830–10839. [Google Scholar] [CrossRef] [PubMed]
- Masoner, J.R.; Kolpin, D.W.; Cozzarelli, I.M.; Smalling, K.L.; Bolyard, S.C.; Field, J.A.; Furlong, E.T.; Gray, J.L.; Lozinski, D.; Reinhart, D.; et al. Landfill leachate contributes per-/poly-fluoroalkyl substances (PFAS) and pharmaceuticals to municipal wastewater. Environ. Sci. Water Res. Technol. 2020, 6, 1300–1311. [Google Scholar] [CrossRef]
- Mohapatra, S.; Huang, C.-H.; Mukherji, S.; Padhye, L.P. Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States. Chemosphere 2016, 159, 526–535. [Google Scholar] [CrossRef]
- Archer, E.; Petrie, B.; Kasprzyk-Hordern, B.; Wolfaardt, G. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere 2017, 174, 437–446. [Google Scholar] [CrossRef]
- Feo, M.L.; Bagnati, R.; Passoni, A.; Riva, F.; Manta, D.S.; Sprovieri, M.; Traina, A.; Zuccato, E.; Castiglioni, S. Pharmaceuticals and other contaminants in waters and sediments from Augusta Bay (southern Italy). Sci. Total Environ. 2020, 739, 139827. [Google Scholar] [CrossRef]
- Paíga, P.; Correia, M.; Fernandes, M.J.; Silva, A.; de Carvalho, M.M.M.; Vieira, J.; Jorge, S.; Silva, J.G.; Freire, C.; Delerue-Matos, C. Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation. Sci. Total Environ. 2019, 648, 582–600. [Google Scholar] [CrossRef] [PubMed]
- Kosma, C.I.; Nannou, C.I.; Boti, V.I.; Albanis, T.A. Psychiatrics and selected metabolites in hospital and urban wastewaters: Occurrence, removal, mass loading, seasonal influence and risk assessment. Sci. Total Environ. 2019, 659, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Ofrydopoulou, A.; Nannou, C.; Evgenidou, E.; Christodoulou, A.; Lambropoulou, D. Assessment of a wide array of organic micropollutants of emerging concern in wastewater treatment plants in Greece: Occurrence, removals, mass loading and potential risks. Sci. Total Environ. 2021, 802, 149860. [Google Scholar] [CrossRef]
- Malakootian, M.; Kannan, K.; Gharaghani, M.A.; Dehdarirad, A.; Nasiri, A.; Shahamat, Y.D.; Mahdizadeh, H. Removal of metronidazole from wastewater by Fe/charcoal micro electrolysis fluidized bed reactor. J. Environ. Chem. Eng. 2019, 7, 103457. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Vaz-Moreira, I.; Giustina, S.V.D.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T.U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Martinez, J.L.; et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int. 2020, 140, 105733. [Google Scholar] [CrossRef]
- dos Santos, M.M.; Hoppe-Jones, C.; Snyder, S.A. DEET occurrence in wastewaters: Seasonal, spatial and diurnal variability-mismatches between consumption data and environmental detection. Environ. Int. 2019, 132, 105038. [Google Scholar] [CrossRef]
- Xiao, Y.; Shao, X.-T.; Tan, D.-Q.; Yan, J.-H.; Pei, W.; Wang, Z.; Yang, M.; Wang, D.-G. Assessing the trend of diabetes mellitus by analyzing metformin as a biomarker in wastewater. Sci. Total Environ. 2019, 688, 281–287. [Google Scholar] [CrossRef]
- Yan, J.-H.; Xiao, Y.; Tan, D.-Q.; Shao, X.-T.; Wang, Z.; Wang, D.-G. Wastewater analysis reveals spatial pattern in consumption of anti-diabetes drug metformin in China. Chemosphere 2019, 222, 688–695. [Google Scholar] [CrossRef]
- Scheurer, M.; Sacher, F.; Brauch, H.-J. Occurrence of the antidiabetic drug metformin in sewage and surface waters in Germany. J. Environ. Monit. 2009, 11, 1608–1613. [Google Scholar] [CrossRef]
- Van Nuijs, A.L.N.; Tarcomnicu, I.; Simons, W.; Bervoets, L.; Blust, R.; Jorens, P.G.; Neels, H.; Covaci, A. Optimization and validation of a hydrophilic interaction liquid chromatography–Tandem mass spectrometry method for the determination of 13 top-prescribed pharmaceuticals in influent wastewater. Anal. Bioanal. Chem. 2010, 398, 2211–2222. [Google Scholar] [CrossRef]
- Jureczko, M.; Kalka, J. Cytostatic pharmaceuticals as water contaminants. Eur. J. Pharmacol. 2020, 866, 172816. [Google Scholar] [CrossRef] [PubMed]
- Balcerzak, W.; Rezka, P. Occurrence of anti-cancer drugs in the aquatic environment and efficiency of their removal—The selected issues. Czas. Tech. 2014, 20, 11–18. [Google Scholar]
- Zhang, J.; Chang, V.W.; Giannis, A.; Wang, J.-Y. Removal of cytostatic drugs from aquatic environment: A review. Sci. Total Environ. 2013, 445–446, 281–298. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.; Camacho-Muñoz, D.; Santos, J.L.; Aparicio, I.; Alonso, E. Occurrence and Ecotoxicological Risk Assessment of 14 Cytostatic Drugs in Wastewater. Water Air Soil Pollut. 2014, 225, 1896. [Google Scholar] [CrossRef]
- Ikonen, J.; Nuutinen, I.; Niittynen, M.; Hokajärvi, A.-M.; Pitkänen, T.; Antikainen, E.; Miettinen, I. Presence and Reduction of Anthropogenic Substances with UV Light and Oxidizing Disinfectants in Wastewater—A Case Study at Kuopio, Finland. Water 2021, 13, 360. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Decision (EU) 2016/110 of 27 January 2016. Euratom 2016, 2001, 20–30. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016D0110&from=EN (accessed on 24 February 2022).
- Gracia-Lor, E.; Sancho, J.V.; Serrano, R.; Hernández, F. Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia. Chemosphere 2012, 87, 453–462. [Google Scholar] [CrossRef] [Green Version]
- EMEA. Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use. 2006. Available online: http://www.emea.eu.int (accessed on 23 October 2018).
- Papageorgiou, M.; Zioris, I.; Danis, T.; Bikiaris, D.; Lambropoulou, D. Comprehensive investigation of a wide range of pharmaceuticals and personal care products in urban and hospital wastewaters in Greece. Sci. Total Environ. 2019, 694, 133565. [Google Scholar] [CrossRef]
- Kapelewska, J.; Kotowska, U.; Karpińska, J.; Kowalczuk, D.; Arciszewska, A.; Świrydo, A. Occurrence, removal, mass loading and environmental risk assessment of emerging organic contaminants in leachates, groundwaters and wastewaters. Microchem. J. 2018, 137, 292–301. [Google Scholar] [CrossRef]
- Styszko, K.; Proctor, K.; Castrignanò, E.; Kasprzyk-Hordern, B. Occurrence of pharmaceutical residues, personal care products, lifestyle chemicals, illicit drugs and metabolites in wastewater and receiving surface waters of Krakow agglomeration in South Poland. Sci. Total Environ. 2021, 768, 144360. [Google Scholar] [CrossRef]
Therapeutic Class | Min. | Max. | Mean | (%) Detection Frequency |
---|---|---|---|---|
Antibiotics | <MDL | 119.7 | 8.3 | 23 |
NSAIDs and analgesics | <MDL | 205.2 | 9.8 | 40 |
Psychiatrics | <MDL | 17.2 | <MQL | 9 |
Cytostatics/antineoplastics | <MDL | 759.9 | 6.3 | 5 |
Antihypertensives | <MDL | 3340.2 | 413.8 | 44 |
β-blockers | <MDL | 53.7 | 2.7 | 29 |
Antidiabetics | <MDL | 141.1 | 10.5 | 21 |
Antihistamine | <MDL | 509.8 | 30.2 | 10 |
Antiepileptics | <MDL | 640.4 | 53.2 | 44 |
Lipid regulators | <MDL | 0.4 | <MQL | 6 |
UV filters | <MDL | 68.6 | 8.9 | 18 |
Antivirals | <MDL | 0.0 | <MQL | 1 |
Proton pump inhibitors | <MDL | 9.2 | 4.7 | 8 |
Steroid hormones | <MDL | 0.1 | <MQL | 2 |
Muscarinic antagonist | <MDL | 26.3 | 7.1 | 34 |
Anesthetics | <MDL | 4.2 | <MQL | 9 |
Antidiarrheals | <MDL | 8.3 | 1.3 | 30 |
Antifungal | <MDL | 352.5 | 88.2 | 43 |
Calcium channel blocker | <MDL | 5.0 | 3.3 | 0 |
Diueretics | <MDL | 25.4 | 1.2 | 16 |
Caffeine | <MDL | 144.8 | 37.4 | 100 |
Anti-Parkinson | <MDL | <MDL | <MDL | 0 |
Anti-vertigo | <MDL | 118.7 | 42.4 | 55 |
Cough medicine | <MDL | <MDL | <MDL | 0 |
Corticosteroids | <MDL | <MDL | <MDL | 0 |
Thyroid hormone | <MDL | <MDL | <MDL | 0 |
Laxative | <MDL | <MDL | <MDL | 0 |
a1 receptor antagonist | <MDL | 4.8 | 1.7 | 50 |
Anti-angina | <MDL | <MDL | <MDL | 0 |
Selective estrogen receptor modulators | <MDL | <MDL | <MDL | 0 |
Insect repellent | <MDL | 522.0 | 186.8 | 82 |
Antiseptic/antibacterial | <MDL | 6.4 | 1.0 | 9 |
Ergot alkaloids | <MDL | <MDL | <MDL | 0 |
Food supplement | <MDL | 35.6 | 5.0 | 17 |
Antiplatelet agent | <MDL | <MDL | <MDL | 0 |
Phosphodiesterase inhibitors | <MDL | 6.2 | 0.7 | 17 |
Adrenergic receptors | <MDL | 91.9 | 19.0 | 41 |
Bronchodilator | <MDL | <MDL | <MDL | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nannou, C.; Kaprara, E.; Psaltou, S.; Salapasidou, M.; Palasantza, P.-A.; Diamantopoulos, P.; Lambropoulou, D.A.; Mitrakas, M.; Zouboulis, A. Monitoring of a Broad Set of Pharmaceuticals in Wastewaters by High-Resolution Mass Spectrometry and Evaluation of Heterogenous Catalytic Ozonation for Their Removal in a Pre-Industrial Level Unit. Analytica 2022, 3, 195-212. https://doi.org/10.3390/analytica3020014
Nannou C, Kaprara E, Psaltou S, Salapasidou M, Palasantza P-A, Diamantopoulos P, Lambropoulou DA, Mitrakas M, Zouboulis A. Monitoring of a Broad Set of Pharmaceuticals in Wastewaters by High-Resolution Mass Spectrometry and Evaluation of Heterogenous Catalytic Ozonation for Their Removal in a Pre-Industrial Level Unit. Analytica. 2022; 3(2):195-212. https://doi.org/10.3390/analytica3020014
Chicago/Turabian StyleNannou, Christina, Efthimia Kaprara, Savvina Psaltou, Maria Salapasidou, Panagiota-Aikaterini Palasantza, Panagiotis Diamantopoulos, Dimitra A. Lambropoulou, Manassis Mitrakas, and Anastasios Zouboulis. 2022. "Monitoring of a Broad Set of Pharmaceuticals in Wastewaters by High-Resolution Mass Spectrometry and Evaluation of Heterogenous Catalytic Ozonation for Their Removal in a Pre-Industrial Level Unit" Analytica 3, no. 2: 195-212. https://doi.org/10.3390/analytica3020014
APA StyleNannou, C., Kaprara, E., Psaltou, S., Salapasidou, M., Palasantza, P. -A., Diamantopoulos, P., Lambropoulou, D. A., Mitrakas, M., & Zouboulis, A. (2022). Monitoring of a Broad Set of Pharmaceuticals in Wastewaters by High-Resolution Mass Spectrometry and Evaluation of Heterogenous Catalytic Ozonation for Their Removal in a Pre-Industrial Level Unit. Analytica, 3(2), 195-212. https://doi.org/10.3390/analytica3020014